Patents by Inventor Sameer P. Pendharkar

Sameer P. Pendharkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11482613
    Abstract: An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: October 25, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, John Lin
  • Patent number: 10937905
    Abstract: A semiconductor device includes at least a first transistor including at least a second level metal layer (second metal layer) above a first level metal layer coupled by a source contact to a source region doped with a first dopant type. The second level metal layer is coupled by a drain contact to a drain region doped with the first dopant type. A gate stack is between the source region and drain region having the second level metal layer coupled by a contact thereto. The second level metal layer is coupled by a contact to a first isolation region doped with the second dopant type. The source region and drain region are within the first isolation region. A second isolation region doped with the first dopant type encloses the first isolation region, and is not coupled to the second level metal layer so that it electrically floats.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: March 2, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Philip L. Hower, Sameer P. Pendharkar, John Lin, Guru Mathur, Scott Balster, Victor Sinow
  • Patent number: 10903306
    Abstract: Embodiments of a deep trench capacitor are disclosed. In one example a plurality of deep trenches is located in a first region of a semiconductor wafer, the first region having a first conductivity type. A corresponding dielectric layer is located on a surface of each of the plurality of deep trenches, and a corresponding doped polysilicon filler is located within each of the dielectric layers. Dielectric-filled trenches are located between each of the dielectric layers and the surface of the semiconductor wafer.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: January 26, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Hideaki Kawahara, Sameer P. Pendharkar
  • Patent number: 10601422
    Abstract: An integrated circuit chip includes a bimodal power N-P-Laterally Diffused Metal Oxide Semiconductor (LDMOS) device having an N-gate coupled to receive an input signal and a level shifter coupled to receive the input signal and to provide a control signal to a P-gate driver of the N-P-LDMOS device. A method of operating an N-P-LDMOS power device is also disclosed.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: March 24, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Philip L. Hower, Salvatore Giombanco, Filippo Marino, Seetharaman Sridhar
  • Patent number: 10319809
    Abstract: A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: June 11, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Philip L. Hower, John Lin, Guru Mathur, Scott G. Balster, Constantin Bulucea, Zachary K. Lee, Sameer P. Pendharkar
  • Publication number: 20190172930
    Abstract: An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Inventors: Sameer P. PENDHARKAR, John LIN
  • Publication number: 20190051721
    Abstract: Embodiments of a deep trench capacitor are disclosed. In one example a plurality of deep trenches is located in a first region of a semiconductor wafer, the first region having a first conductivity type. A corresponding dielectric layer is located on a surface of each of the plurality of deep trenches, and a corresponding doped polysilicon filler is located within each of the dielectric layers. Dielectric-filled trenches are located between each of the dielectric layers and the surface of the semiconductor wafer.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 14, 2019
    Inventors: Binghua Hu, Hideaki Kawahara, Sameer P. Pendharkar
  • Patent number: 10205001
    Abstract: An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: February 12, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, John Lin
  • Patent number: 10134830
    Abstract: A deep trench capacitor and a method for providing the same in a semiconductor process are disclosed. The method includes forming a plurality of deep trenches in a first region of a semiconductor wafer, the first region having well doping of a first type. A dielectric layer is formed on a surface of the plurality of deep trenches and a doped polysilicon layer is deposited to fill the plurality of deep trenches, with the doped polysilicon being doped with a dopant of a second type. Shallow trench isolation is formed overlying the dielectric layer at an intersection of the dielectric layer with the surface of the semiconductor wafer.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: November 20, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Hideaki Kawahara, Sameer P. Pendharkar
  • Patent number: 10121891
    Abstract: RESURF-based dual-gate p-n bimodal conduction laterally diffused metal oxide semiconductors (LDMOS). In an illustrative embodiment, a p-type source is electrically coupled to an n-type drain. A p-type drain is electrically coupled to an n-type source. An n-type layer serves as an n-type conduction channel between the n-type drain and the n-type source. A p-type top layer is disposed at the surface of the substrate of said semiconductor device and is disposed above and adjacent to the n-type layer. The p-type top layer serves as a p-type conduction channel between the p-type source and the p-type drain. An n-gate controls current flow in the n-type conduction channel, and a p-gate controls current flow in the p-type conduction channel.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: November 6, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Henry Litzmann Edwards
  • Patent number: 9985028
    Abstract: A multi-finger lateral high voltage transistors (MFLHVT) includes a substrate doped a first dopant type, a well doped a second dopant type, and a buried drift layer (BDL) doped first type having a diluted BDL portion (DBDL) including dilution stripes. A semiconductor surface doped the second type is on the BDL. Dielectric isolation regions have gaps defining a first active area in a first gap region (first MOAT) and a second active area in a second gap region (second MOAT). A drain includes drain fingers in the second MOAT interdigitated with source fingers in the first MOAT each doped second type. The DBDL is within a fingertip drift region associated drain fingertips and/or source fingertips between the first and second MOAT. A gate stack is on the semiconductor surface between source and drain. The dilution stripes have stripe widths that increase monotonically with a drift length at their respective positions.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: May 29, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Scott G. Balster
  • Publication number: 20180108729
    Abstract: A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.
    Type: Application
    Filed: December 15, 2017
    Publication date: April 19, 2018
    Inventors: Yongxi Zhang, Philip L. Hower, John Lin, Guru Mathur, Scott G. Balster, Constantin Bulucea, Zachary K. Lee, Sameer P. Pendharkar
  • Publication number: 20180097517
    Abstract: An integrated circuit chip includes a bimodal power N-P-Laterally Diffused Metal Oxide Semiconductor (LDMOS) device having an N-gate coupled to receive an input signal and a level shifter coupled to receive the input signal and to provide a control signal to a P-gate driver of the N-P-LDMOS device. A method of operating an N-P-LDMOS power device is also disclosed.
    Type: Application
    Filed: November 10, 2017
    Publication date: April 5, 2018
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Philip L. Hower, Salvatore Giombanco, Filippo Marino, Seetharaman Sridhar
  • Publication number: 20180076277
    Abstract: A deep trench capacitor and a method for providing the same in a semiconductor process are disclosed. The method includes forming a plurality of deep trenches in a first region of a semiconductor wafer, the first region having well doping of a first type. A dielectric layer is formed on a surface of the plurality of deep trenches and a doped polysilicon layer is deposited to fill the plurality of deep trenches, with the doped polysilicon being doped with a dopant of a second type. Shallow trench isolation is formed overlying the dielectric layer at an intersection of the dielectric layer with the surface of the semiconductor wafer.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 15, 2018
    Inventors: Binghua Hu, Hideaki Kawahara, Sameer P. Pendharkar
  • Patent number: 9876071
    Abstract: A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.
    Type: Grant
    Filed: February 28, 2015
    Date of Patent: January 23, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Philip L Hower, John Lin, Guru Mathur, Scott G. Balster, Constantin Bulucea, Zachary K. Lee, Sameer P Pendharkar
  • Patent number: 9865691
    Abstract: A semiconductor device is formed by forming a deep trench in a substrate and a dielectric liner on sidewalls of the deep trench. A first undoped polysilicon layer is formed on the semiconductor device, extending into the deep trench on the dielectric liner, but not filling the deep trench. Dopants are implanted into the first polysilicon layer. A second layer of polysilicon is formed on the first layer of polysilicon. A thermal drive anneal activates and diffuses the dopants. In one version, the dielectric liner is removed at the bottom of the deep trench before the first polysilicon layer is formed, so that the polysilicon in the deep trench provides a contact to the substrate. In another version, the polysilicon in the deep trench is isolated from the substrate by the dielectric liner.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: January 9, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Binghua Hu, Sameer P. Pendharkar, Jarvis Benjamin Jacobs
  • Patent number: 9843322
    Abstract: An integrated circuit chip includes a bimodal power N-P-Laterally Diffused Metal Oxide Semiconductor (LDMOS) device having an N-gate coupled to receive an input signal and a level shifter coupled to receive the input signal and to provide a control signal to a P-gate driver of the N-P-LDMOS device. A method of operating an N-P-LDMOS power device is also disclosed.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: December 12, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Philip L. Hower, Salvatore Giombanco, Filippo Marino, Seetharaman Sridhar
  • Patent number: 9806074
    Abstract: An integrated circuit and method having an LDMOS transistor with multiple current channels. A first current channel is above a buried p-type diffusion and a second one current channel is below the buried p-type diffusion.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: October 31, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yongxi Zhang, Sameer P. Pendharkar
  • Publication number: 20170264289
    Abstract: An integrated circuit chip includes a bimodal power N-P-Laterally Diffused Metal Oxide Semiconductor (LDMOS) device having an N-gate coupled to receive an input signal and a level shifter coupled to receive the input signal and to provide a control signal to a P-gate driver of the N-P-LDMOS device. A method of operating an N-P-LDMOS power device is also disclosed.
    Type: Application
    Filed: March 11, 2016
    Publication date: September 14, 2017
    Inventors: Yongxi Zhang, Sameer P. Pendharkar, Philip L. Hower, Salvatore Giombanco, Filippo Marino, Seetharaman Sridhar
  • Publication number: 20170221896
    Abstract: A multi-finger lateral high voltage transistors (MFLHVT) includes a substrate doped a first dopant type, a well doped a second dopant type, and a buried drift layer (BDL) doped first type having a diluted BDL portion (DBDL) including dilution stripes. A semiconductor surface doped the second type is on the BDL. Dielectric isolation regions have gaps defining a first active area in a first gap region (first MOAT) and a second active area in a second gap region (second MOAT). A drain includes drain fingers in the second MOAT interdigitated with source fingers in the first MOAT each doped second type. The DBDL is within a fingertip drift region associated drain fingertips and/or source fingertips between the first and second MOAT. A gate stack is on the semiconductor surface between source and drain. The dilution stripes have stripe widths that increase monotonically with a drift length at their respective positions.
    Type: Application
    Filed: April 19, 2017
    Publication date: August 3, 2017
    Inventors: Yongxi ZHANG, Sameer P. PENDHARKAR, Scott G. BALSTER