Patents by Inventor Sameer Vasantlal Vora

Sameer Vasantlal Vora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10454509
    Abstract: A communication circuit may include a first pair of digital-to-analog converters (DACs) coupled to an input of a first mixer and configured to generate first baseband signals. The communication circuit may further include a second pair of DACs coupled to an input of a second mixer and configured to generate second baseband signals. The second baseband signals may be shifted in phase relative to the first baseband signals.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 22, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Bhushan Shanti Asuri, Krishnaswamy Thiagarajan, Ashok Swaminathan, Shahin Mehdizad Taleie, Yen-Wei Chang, Vinod Panikkath, Sameer Vasantlal Vora, Ayush Mittal, Tonmoy Biswas, Sy-Chyuan Hwu, Zhilong Tang, Ibrahim Chamas, Ping Wing Lai, Behnam Sedighi, Dongwon Seo, Nitz Saputra
  • Publication number: 20190288722
    Abstract: A communication circuit may include a first pair of digital-to-analog converters (DACs) coupled to an input of a first mixer and configured to generate first baseband signals. The communication circuit may further include a second pair of DACs coupled to an input of a second mixer and configured to generate second baseband signals. The second baseband signals may be shifted in phase relative to the first baseband signals.
    Type: Application
    Filed: April 25, 2018
    Publication date: September 19, 2019
    Inventors: Bhushan Shanti ASURI, Krishnaswamy THIAGARAJAN, Ashok SWAMINATHAN, Shahin MEHDIZAD TALEIE, Yen-Wei CHANG, Vinod PANIKKATH, Sameer Vasantlal VORA, Ayush MITTAL, Tonmoy BISWAS, Sy-Chyuan HWU, Zhilong TANG, Ibrahim CHAMAS, Ping Wing LAI, Behnam SEDIGHI, Dongwon SEO, Nitz SAPUTRA
  • Patent number: 10348528
    Abstract: A system includes: a baseband phase generator configured to receive differential in-phase (I) and quadrature (Q) signals and configured to output N phase-shifted baseband signals, wherein N is greater than 4, further wherein the baseband phase generator comprises a plurality of notch filters configured to receive the I and Q signals; and an upconverter configured to receive the phase-shifted baseband signals, to perform mixing on the phase-shifted baseband signals, and to output a differential upconverted signal.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: July 9, 2019
    Assignee: QUALCOMM Incorporation
    Inventors: Ayush Mittal, Bhushan Shanti Asuri, Krishnaswamy Thiagarajan, Sameer Vasantlal Vora, Mahim Ranjan
  • Publication number: 20180139078
    Abstract: A system includes: a baseband phase generator configured to receive differential in-phase (I) and quadrature (Q) signals and configured to output N phase-shifted baseband signals, wherein N is greater than 4, further wherein the baseband phase generator comprises a plurality of notch filters configured to receive the I and Q signals; and an upconverter configured to receive the phase-shifted baseband signals, to perform mixing on the phase-shifted baseband signals, and to output a differential upconverted signal.
    Type: Application
    Filed: March 29, 2017
    Publication date: May 17, 2018
    Inventors: Ayush Mittal, Bhushan Shanti Asuri, Krishnaswamy Thiagarajan, Sameer Vasantlal Vora, Mahim Ranjan
  • Patent number: 9071197
    Abstract: Methods and apparatuses are presented for harmonic reject upconverting a baseband signal using at least one quadrature passive upconversion mixer. In some embodiments, an apparatus may include a first quadrature passive mixer configured to receive a first baseband input and a first LO input, and a second quadrature passive mixer configured to receive a second baseband input and a second LO input. A first output of said first passive mixer may be directly connected to a first output of said second passive mixer and together coupled to a first amplifier input. A second output of said first passive mixer may be directly connected to a second output of said second passive mixer and together coupled to a second amplifier input. The transmitter may be configured to output an upconverted signal with at least one rejected harmonic spurious mixing product based on the first and second amplifier inputs.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: June 30, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Sameer Vasantlal Vora, Jeremy Darren Dunworth
  • Publication number: 20150094004
    Abstract: Methods and apparatuses are presented for harmonic reject upconverting a baseband signal using at least one quadrature passive upconversion mixer. In some embodiments, an apparatus may include a first quadrature passive mixer configured to receive a first baseband input and a first LO input, and a second quadrature passive mixer configured to receive a second baseband input and a second LO input. A first output of said first passive mixer may be directly connected to a first output of said second passive mixer and together coupled to a first amplifier input. A second output of said first passive mixer may be directly connected to a second output of said second passive mixer and together coupled to a second amplifier input. The transmitter may be configured to output an upconverted signal with at least one rejected harmonic spurious mixing product based on the first and second amplifier inputs.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Sameer Vasantlal VORA, Jeremy Darren DUNWORTH
  • Patent number: 8976897
    Abstract: The transmission path of a communication device includes, in part, N upconverters each of which receives M phases of a signal to be transmitted. Each upconverter further receives one of N sets of phases of a LO signal. Each of the N sets includes M phases of the LO signal. The communication device further includes at least one combiner, and N amplifiers each responsive to a different one of the N upconverters to generate N amplified signals. The combiner combines the N amplified signals to generate an output signal. By selecting the gain of one of the amplifiers to be different than the gain of the remaining amplifiers, the undesired harmonics of the signal to be transmitted, caused by non-linearity of the amplifiers, is reduced. Each upconverter optionally includes a multitude of upconverters whose outputs are combined to further reduce the spurious harmonic upconversion products and the counter-intermodulation distortion (IM3).
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: March 10, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Sameer Vasantlal Vora, Wing Fat Andy Lau
  • Publication number: 20150030105
    Abstract: The transmission path of a communication device includes, in part, N upconverters each of which receives M phases of a signal to be transmitted. Each upconverter further receives one of N sets of phases of a LO signal. Each of the N sets includes M phases of the LO signal. The communication device further includes at least one combiner, and N amplifiers each responsive to a different one of the N upconverters to generate N amplified signals. The combiner combines the N amplified signals to generate an output signal. By selecting the gain of one of the amplifiers to be different than the gain of the remaining amplifiers, the undesired harmonics of the signal to be transmitted, caused by non-linearity of the amplifiers, is reduced. Each upconverter optionally includes a multitude of upconverters whose outputs are combined to further reduce the spurious harmonic upconversion products and the counter-intermodulation distortion (IM3).
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Sameer Vasantlal Vora, Wing Fat Andy Lau