Patents by Inventor Sameer Vijay
Sameer Vijay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11708425Abstract: Described herein is a polymerization reactor system comprising at least one loop reactor and/or at least one transfer line, and further comprising at least one withdrawal valve, wherein the at least one withdrawal valve is mounted to a wall of a lower horizontal segment of the loop reactor and/or to a wall of the transfer line, at an angle a of more than 0° and equal to or less than 85°, determined from perpendicular to a tangent of the wall at the mounting position in flow direction of a slurry in the loop reactor and/or in the transfer line.Type: GrantFiled: November 2, 2018Date of Patent: July 25, 2023Assignee: BOREALIS AGInventors: Christof Wurnitsch, Sameer Vijay, Erno Elovainio
-
Publication number: 20230002575Abstract: The present invention relates to a method for removing a foreign material from the surface of an article comprising the following steps: i) providing an article having a surface covered at least partly with a foreign material; ii) contacting the article provided in step i) with a cleaning medium being an acid having a pKa in the range from ?10 to 7 having a minimum concentration of 1 wt.Type: ApplicationFiled: November 2, 2020Publication date: January 5, 2023Inventors: Simon Anthony Jones, Kilian Piettre, Sameer Vijay
-
Patent number: 11518863Abstract: Disclosed is a process for treating plastic waste chips containing a blend of polypropylene and polyethylene in an amount of at least 83.0 wt.-% to less than 100 wt.-% and further containing C7 to C11 aldehydes in an amount of 8000 ppb to 20000 ppb and limonene in an amount of 5 ppm to 500 ppm, the process comprising subjecting said plastic waste chips, in a fixed bed without stirring under standard pressure or reduced pressure, to a gas flow for achieving a Reynolds number in the range of 35 to 1200 at a temperature in the range of 20° C. to a point 10° C. below the Vicat softening point (10N, ISO 306) of said plastic waste and recovering the treated plastic waste chips containing C7 to C11 aldehydes in a total amount of 50 ppb to less than 5000 ppb limonene in an amount of 0.5 to 5 ppm.Type: GrantFiled: July 6, 2020Date of Patent: December 6, 2022Assignee: Borealis AGInventor: Sameer Vijay
-
Publication number: 20220380498Abstract: The present invention relates to a polymerization process, comprising: a) supplying a feed containing ethylene and at least one alpha-olefin having 3 to 12 carbon atoms in a hydrocarbon solvent to a polymerization reactor, b) contacting the feed of step a) in the reactor with a catalyst to form a reaction mixture containing an ethylene-alpha-olefin co-polymer, c) withdrawing the reaction mixture from the polymerization reactor as a reactor outlet stream which comprises the ethylene-alpha-olefin co-polymer, unreacted monomer and comonomer, catalyst, and hydrocarbon solvent, d) heating the reactor outlet stream to a temperature which is at least 5° C. higher than the temperature of the reaction mixture at the outlet of the reactor for a time period of between 1 and 250 seconds in order to de-activate the polymerization catalyst, and e) separating hydrocarbon solvent, monomer and comonomer from the reactor outlet stream and recycling it back to the polymerization reactor without further purification steps.Type: ApplicationFiled: December 7, 2020Publication date: December 1, 2022Inventors: Mohammad Al-haj Ali, Michiel Bergstra, Erik Eriksson, Sameer Vijay, Christof Wumitsch, Samuli Zitting, Henry Sleijster, Noureddine Ajellal
-
Patent number: 11512157Abstract: The present invention relates to a process for removing hydrocarbons comprising the steps of: (A) passing a stream of a solution into a separator wherein a liquid phase comprising polymer and a vapour phase coexist; (B) withdrawing a vapour stream and a concentrated solution stream from the separator; (C) passing at least a part of the vapour stream into a first fractionator; (D) withdrawing a first overhead stream and a first bottom stream from the first fractionator; (E) passing the first overhead stream to a second fractionator; (F) withdrawing a second overhead stream and a second bottom stream from the second fractionator; (G) passing the second overhead stream to a third fractionator; (H) withdrawing a third overhead stream and a third bottom stream from the third fractionator; characterised in that at least a part of the third bottom stream is withdrawn as a purge stream.Type: GrantFiled: November 22, 2018Date of Patent: November 29, 2022Assignee: BOREALIS AGInventors: Mohammad Al-Haj Ali, Erik Eriksson, Guhan Mathivanan, Jukka Räsänen, Henry Sleijster, Sameer Vijay, Samuli Zitting
-
Patent number: 11485636Abstract: The invention provides a process for separating hydrogen from a gaseous feed stream in a polymerisation process, comprising the steps i) polymerising an olefin monomer and optionally at least one olefin comonomer, in the presence of a solvent optionally in the presence of hydrogen, so as to form a polymerisation reaction mixture comprising a polyolefin polymer, unreacted monomer(s), solvent and hydrogen; ii) separating said polyolefin polymer from said unreacted monomer(s), solvent and hydrogen; iii) feeding said unreacted monomer(s) and hydrogen to a condenser so as to form said gaseous feed stream; iv) contacting said gaseous feed stream with a hydrogen separating membrane so as to form a hydrogen-rich gaseous stream and a hydrogen-lean gaseous stream.Type: GrantFiled: February 22, 2019Date of Patent: November 1, 2022Assignee: BOREALIS AGInventor: Sameer Vijay
-
Publication number: 20220275221Abstract: A method for removing ink and/or a foreign material different from ink from the surface of an article, wherein at least a part of the surface of the article comprises a polymer, the method includes: i) providing an ink imprinted article and/or an article having a surface covered at least partly by a foreign material different from ink; ii) contacting the article provided in step i) with an acid having a pKa in the range from ?10 to 7 having a minimum concentration of 1 wt.-% for solving the ink and/or the foreign material different from ink or their degradation products in the acid; iii) separating the acid and the therein dissolved ink- and/or foreign material different from ink or their degradation products from the article to obtain a deinked article and/or an article with a surface free from foreign material.Type: ApplicationFiled: July 16, 2020Publication date: September 1, 2022Inventors: Simon Anthony Jones, Rebeca Reguillo Carmona, Kilian Piettre, Sameer Vijay, David Ganglberger
-
Publication number: 20220204719Abstract: Disclosed is a process for treating plastic waste chips containing a blend of polypropylene and polyethylene in an amount of at least 83.0 wt.-% to less than 100 wt.-% and further containing C7 to C11 aldehydes in an amount of 8000 ppb to 20000 ppb limonene in an amount of 5 ppm to 500 ppm, the process comprising subjecting said plastic waste chips, in a fixed bed without stirring under standard pressure or reduced pressure, to a gas flow for achieving a Reynolds number in the range of 35 to 1200 at a temperature in the range of 20° C. to a point 10° C. below the Vicat softening point (10N, ISO 306) of said plastic waste and recovering the treated plastic waste chips containing C7 to C11 aldehydes in a total amount of 50 ppb to less than 5000 ppb limonene in an amount of 0.5 to 5 ppm.Type: ApplicationFiled: July 6, 2020Publication date: June 30, 2022Applicant: BOREALIS AGInventor: Sameer VIJAY
-
Patent number: 11149096Abstract: The present invention relates to a process for removing hydrocarbons comprising the steps of: (A) passing a stream of a solution into a separator wherein a liquid phase comprising polymer and a vapor phase coexist; (B) withdrawing a vapor stream and a concentrated solution stream from the separator; (C) passing at least a part of the vapour stream into a first fractionator; (D) withdrawing a first overhead stream and a first bottom stream from the first fractionator; (E) passing the first bottom stream to a second fractionator; (F) withdrawing a second overhead stream and a second bottom stream from the second fractionator; characterized in that at least a part of the second overhead stream is withdrawn as a purge stream.Type: GrantFiled: November 22, 2018Date of Patent: October 19, 2021Assignee: BOREALIS AGInventors: Mohammad Al-Haj Ali, Erik Eriksson, Guhan Mathivanan, Jukka Räsänen, Henry Sleijster, Sameer Vijay, Samuli Zitting
-
Publication number: 20210171677Abstract: The present invention relates to a process for removing hydrocarbons comprising the steps of: (A) passing a stream of a solution into a separator wherein a liquid phase comprising polymer and a vapour phase coexist; (B) withdrawing a vapour stream and a concentrated solution stream from the separator; (C) passing at least a part of the vapour stream into a first fractionator; (D) withdrawing a first overhead stream and a first bottom stream from the first fractionator; (E) passing the first overhead stream to a second fractionator; (F) withdrawing a second overhead stream and a second bottom stream from the second fractionator; (G) passing the second overhead stream to a third fractionator; (H) withdrawing a third overhead stream and a third bottom stream from the third fractionator; characterised in that at least a part of the third bottom stream is withdrawn as a purge stream.Type: ApplicationFiled: November 22, 2018Publication date: June 10, 2021Inventors: Mohammad AL-HAJ ALI, Erik ERIKSSON, Guhan MATHIVANAN, Jukka RÄSÄNEN, Henry SLEIJSTER, Sameer VIJAY, Samuli ZITTING
-
Publication number: 20210009414Abstract: The invention provides a process for separating hydrogen from a gaseous feed stream in a polymerisation process, comprising the steps i) polymerising an olefin monomer and optionally at least one olefin comonomer, in the presence of a solvent optionally in the presence of hydrogen, so as to form a polymerisation reaction mixture comprising a polyolefin polymer, unreacted monomer(s), solvent and hydrogen; ii) separating said polyolefin polymer from said unreacted monomer(s), solvent and hydrogen; iii) feeding said unreacted monomer(s) and hydrogen to a condenser so as to form said gaseous feed stream; iv) contacting said gaseous feed stream with a hydrogen separating membrane so as to form a hydrogen-rich gaseous stream and a hydrogen-lean gaseous stream.Type: ApplicationFiled: February 22, 2019Publication date: January 14, 2021Applicant: BoreAlis AGInventor: Sameer VIJAY
-
Patent number: 10829610Abstract: The present invention deals with a process for polymerising olefins in a solution and withdrawing a stream of the solution from the polymerisation reactor and passing it to a sequence of heating steps. The heated solution is passed to a separation step, which is conducted at a pressure of no more than 15 bar and in which separation step a liquid phase comprising the polymer and a vapour phase coexist. A vapour stream and a concentrated solution stream comprising the polymer are withdrawn from the separation step. At least a part of the vapour stream is passed to the first polymerisation reactor, to the second polymerisation reactor or to both.Type: GrantFiled: December 21, 2016Date of Patent: November 10, 2020Assignee: BOREALIS AGInventors: Mohammad Al-Haj Ali, Michiel Bergstra, Erik Eriksson, Guhan Mathivanan, Jukka Räsänen, Henry Sleijster, Sameer Vijay, Christof Wurnitsch, Samuli Zitting, Vasileios Kanellopoulos, Jani Aho
-
Publication number: 20200277413Abstract: The present invention relates to a process for removing hydrocarbons comprising the steps of: (A) passing a stream of a solution into a separator wherein a liquid phase comprising polymer and a vapour phase coexist; (B) withdrawing a vapour stream and a concentrated solution stream from the separator; (C) passing at least a part of the vapour stream into a first fractionator; (D) withdrawing a first overhead stream and a first bottom stream from the first fractionator; (E) passing the first bottom stream to a second fractionator; (F) withdrawing a second overhead stream and a second bottom stream from the second fractionator; characterised in that at least a part of the second overhead stream is withdrawn as a purge stream.Type: ApplicationFiled: November 22, 2018Publication date: September 3, 2020Inventors: Mohammad Al-Haj Ali, Erik Eriksson, Guhan Mathivanan, Jukka Räsänen, Henry Sleijster, Sameer Vijay, Samuli Zitting
-
Patent number: 10759880Abstract: A process for producing a polymer composition comprising the steps (A) to (M) as recited herein, involving the polymerization, in a polymerization reactor of a first polymer, a first stream thereof being passed into a first separator wherein a first liquid phase comprising the polymer and a first vapor phase coexist; withdrawing a first vapor stream and a first concentrated solution stream comprising the polymer from the first separator, passing at least a part of the first vapor stream to a first fractionator; withdrawing a first overhead stream and a first bottom stream from the first fractionator; recovering at least a part of the first overhead stream as a first recycle stream and passing it to the polymerization reactor; passing the first concentrated solution stream from the first separator to a second separator, wherein a second liquid phase comprising the polymer and a second vapor phase coexist; passing at least a part of the second vapor stream to a second fractionator; withdrawing a second overheadType: GrantFiled: December 21, 2016Date of Patent: September 1, 2020Assignee: Borealis AGInventors: Mohammad Al-Haj Ali, Erik Eriksson, Guhan Mathivanan, Henry Sleijster, Sameer Vijay, Christof Wurnitsch, Samuli Zitting
-
Publication number: 20200207879Abstract: Described herein is a polymerization reactor system comprising at least one loop reactor and/or at least one transfer line, and further comprising at least one withdrawal valve, wherein the at least one withdrawal valve is mounted to a wall of a lower horizontal segment of the loop reactor and/or to a wall of the transfer line, at an angle ? of more than 0° and equal to or less than 85°, determined from perpendicular to a tangent of the wall at the mounting position in flow direction of a slurry in the loop reactor and/or in the transfer line.Type: ApplicationFiled: November 2, 2018Publication date: July 2, 2020Inventors: Christof Wurnitsch, Sameer Vijay, Erno Elovainio
-
Patent number: 10604595Abstract: A process for withdrawing polyolefins from a reactor includes: continuously withdrawing a liquid solution stream from a solution polymerization reactor and passing the liquid solution stream into a low pressure separator; withdrawing a first vapour stream and a first liquid stream from the separator and passing the first vapour stream into a washing column; withdrawing a second vapour stream from the washing column and feeding it via a condenser line to a condenser; cooling the second vapour stream in the condenser so that part of the second vapour stream condenses, producing a condensed second vapour stream and an uncondensed second vapour stream; passing the condensed second vapour stream to an upper part of the washing column via a reflux line; withdrawing a second liquid stream from the washing column and passing at least part of the second liquid stream to the separator via a recycling line; and recovering heat.Type: GrantFiled: December 21, 2016Date of Patent: March 31, 2020Assignee: BOREALIS AGInventors: Mohammad Al-Haj Ali, Erik Eriksson, Sameer Vijay, Guhan Mathivanan, Jukka Rasanen, Henry Sleijster, Christof Wurnitsch, Samuli Zitting
-
Patent number: 10597472Abstract: An in-line blending process for polymers comprising: (a) providing two or more reactor-low pressure separator units (1,7) in parallel configuration, each reactor-low pressure separator unit comprising one reactor (2,8) fluidly connected to one low pressure separator (3,9) downstream and further a recycling line (5,11) connecting the low pressure separator (3,9) back to the corresponding reactor (2,8); (b) polymerizing olefin monomers having two or more carbon atoms in each of the reactors (2,8) in solution polymerisation; (c) forming an unreduced reactor effluents stream including a homogenous fluid phase polymer-monomer-solvent mixture in each of the reactors (2,8), (d) passing the unreduced reactor effluents streams from each of the reactors (2,8) through the corresponding low pressure separators (3,9), whereby the temperature and pressure of the low pressure separators (3,9) is adjusted such that a liquid phase and a vapour phase are obtained, whereby yielding a polymer-enriched liquid phase and a polymer-Type: GrantFiled: December 21, 2016Date of Patent: March 24, 2020Assignee: BOREALIS AGInventors: Henry Sleijster, Mohammad Al-Haj Ali, Jukka Rasanen, Samuli Zitting, Michiel Bergstra, Erik Eriksson, Christof Wurnitsch, Guhan Mathivanan, Sameer Vijay, Vasileios Kanellopoulos, Jani Aho, Jouni Takakarhu
-
Publication number: 20190126511Abstract: Process for hydraulic conveying of polyolefin pellets comprising the steps of: (i) extruding molten polyolefin into strands and cutting the strands into pellets in an underwater pelletiser (A); (ii) withdrawing a first pellet suspension stream (1.1) from the pelletiser; (iii) concentrating the first pellet suspension stream in a first pellet separator (B); (iv) passing the concentrated pellet stream (1.4) to a hydraulic conveying line through a first vessel (D) and mixing it with water thereby producing a second pellet suspension stream (1.5); (v) withdrawing the second pellet suspension stream from the first vessel and passing it to a second pellet separator (E); (vi) separating the pellets from water in the second pellet separator thereby creating a second water stream (1.6) and a dry pellet stream (1.10) and passing the second water stream back to the first vessel; wherein any one of the first or second pellet suspension stream or the dry pellet stream comprises an antiblock.Type: ApplicationFiled: May 9, 2017Publication date: May 2, 2019Inventors: Jukka Räsänen, Samuli Zitting, Henry Sleijster, Michiel Bergstra, Sameer Vijay
-
Publication number: 20180371201Abstract: The present invention deals with a process for polymerising olefins in a solution and withdrawing a stream of the solution from the polymerisation reactor and passing it to a sequence of heating steps. The heated solution is passed to a separation step, which is conducted at a pressure of no more than 15 bar and in which separation step a liquid phase comprising the polymer and a vapour phase coexist. A vapour stream and a concentrated solution stream comprising the polymer are withdrawn from the separation step. At least a part of the vapour stream is passed to the first polymerisation reactor, to the second polymerisation reactor or to both.Type: ApplicationFiled: December 21, 2016Publication date: December 27, 2018Inventors: Mohammad AL-HAJ ALI, Michiel BERGSTRA, Erik ERIKSSON, Guhan MATHIVANAN, Jukka RÄSÄNEN, Henry SLEIJSTER, Sameer VIJAY, Christof WURNITSCH, Samuli ZITTING, Vasileios KANELLOPOULOS, Jani AHO
-
Publication number: 20180355075Abstract: The present invention relates to a process for producing a polymer composition comprising the steps of: (A) polymerising, in a first polymerisation reactor in a first solvent,—a first olefin monomer having two or more carbon atoms, —in the presence of a first polymerisation catalyst for producing a first solution comprising a first polymer of the first olefin monomer and the first solvent; (B) withdrawing a first stream of the first solution from the first polymerisation reactor; (C) passing the first stream of the first solution into a first separator wherein a first liquid phase comprising the polymer and a first vapour phase coexist; (D) withdrawing a first vapour stream and a first concentrated solution stream comprising the polymer from the first separator; (E) passing at least a part of the first vapour stream to a first fractionator; (F) withdrawing a first overhead stream and a first bottom stream from the first fractionator; (G) recovering at least a part of the first overhead stream as a first recycType: ApplicationFiled: December 21, 2016Publication date: December 13, 2018Inventors: Mohammad AL-HAJ ALI, Erik ERIKSSON, Guhan MATHIVANAN, Henry SLEIJSTER, Sameer VIJAY, Christof WURNITSCH, Samuli ZITTING