Patents by Inventor Sami S. Kanderian

Sami S. Kanderian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918349
    Abstract: Disclosed herein are techniques related to model predictive control. The techniques may involve generating a desired glucose trajectory that approaches a desired steady state setpoint from a current glucose value over a prediction horizon. The techniques may involve generating a plurality of insulin delivery patterns. Each insulin delivery pattern may correspond to an amount of insulin to be delivered over a control horizon. The techniques may involve generating a plurality of predicted glucose trajectories over the control horizon. Each predicted glucose may be generated based on the current glucose value and a respective insulin delivery pattern. The techniques may involve comparing the desired glucose trajectory against each predicted glucose trajectory and selecting a predicted glucose trajectory that is more similar to the desired glucose trajectory than any other predicted glucose trajectory.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: March 5, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Garry M. Steil, Sami S. Kanderian, Jr., Martin T. Cantwell, Udo Hoss
  • Publication number: 20210038134
    Abstract: A system and method for controlling and monitoring a diabetes-management system through the use of a model that predicts or estimates future dynamic states of glucose and insulin from variables such as insulin delivery or exogenous glucose appearance as well as inherent physiological parameters. The model predictive estimator can be used as an insulin bolus advisor to give an apriori estimate of postprandial glucose for a given insulin delivery profile administered with a known meal to optimize insulin delivery; as a supervisor to monitor the operation of the diabetes-management system; and as a model predictive controller to optimize the automated delivery of insulin into a user's body to achieve a desired blood glucose profile or concentration. Open loop, closed-loop, and semi-closed loop embodiments of the invention utilize a mathematical metabolic model that includes a Minimal Model, a Pump Delivery to Plasma Insulin Model, and a Meal Appearance Rate Model.
    Type: Application
    Filed: October 29, 2020
    Publication date: February 11, 2021
    Inventors: GARRY M. STEIL, SAMI S. KANDERIAN, JR., MARTIN T. CANTWELL, UDO HOSS
  • Patent number: 10856786
    Abstract: A system and method for controlling and monitoring a diabetes-management system through the use of a model that predicts or estimates future dynamic states of glucose and insulin from variables such as insulin delivery or exogenous glucose appearance as well as inherent physiological parameters. The model predictive estimator can be used as an insulin bolus advisor to give an apriori estimate of postprandial glucose for a given insulin delivery profile administered with a known meal to optimize insulin delivery; as a supervisor to monitor the operation of the diabetes-management system; and as a model predictive controller to optimize the automated delivery of insulin into a user's body to achieve a desired blood glucose profile or concentration. Open loop, closed-loop, and semi-closed loop embodiments of the invention utilize a mathematical metabolic model that includes a Minimal Model, a Pump Delivery to Plasma Insulin Model, and a Meal Appearance Rate Model.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: December 8, 2020
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Garry M. Steil, Sami S. Kanderian, Jr., Martin T. Cantwell, Udo Hoss
  • Publication number: 20190053742
    Abstract: A system and method for controlling and monitoring a diabetes-management system through the use of a model that predicts or estimates future dynamic states of glucose and insulin from variables such as insulin delivery or exogenous glucose appearance as well as inherent physiological parameters. The model predictive estimator can be used as an insulin bolus advisor to give an apriori estimate of postprandial glucose for a given insulin delivery profile administered with a known meal to optimize insulin delivery; as a supervisor to monitor the operation of the diabetes-management system; and as a model predictive controller to optimize the automated delivery of insulin into a user's body to achieve a desired blood glucose profile or concentration. Open loop, closed-loop, and semi-closed loop embodiments of the invention utilize a mathematical metabolic model that includes a Minimal Model, a Pump Delivery to Plasma Insulin Model, and a Meal Appearance Rate Model.
    Type: Application
    Filed: October 9, 2018
    Publication date: February 21, 2019
    Inventors: GARRY M. STEIL, SAMI S. KANDERIAN, JR., MARTIN T. CANTWELL, UDO HOSS
  • Patent number: 10154804
    Abstract: A system and method for controlling and monitoring a diabetes-management system through the use of a model that predicts or estimates future dynamic states of glucose and insulin from variables such as insulin delivery or exogenous glucose appearance as well as inherent physiological parameters. The model predictive estimator can be used as an insulin bolus advisor to give an apriori estimate of postprandial glucose for a given insulin delivery profile administered with a known meal to optimize insulin delivery; as a supervisor to monitor the operation of the diabetes-management system; and as a model predictive controller to optimize the automated delivery of insulin into a user's body to achieve a desired blood glucose profile or concentration. Open loop, closed-loop, and semi-closed loop embodiments of the invention utilize a mathematical metabolic model that includes a Minimal Model, a Pump Delivery to Plasma Insulin Model, and a Meal Appearance Rate Model.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: December 18, 2018
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Garry M. Steil, Sami S. Kanderian, Jr., Martin T. Cantwell
  • Patent number: 9440025
    Abstract: An infusion system, which may be a closed loop infusion system or “semi-closed-loop” system, uses state variable feedback to control the rate that fluid is infused into the body of a user. The closed loop infusion system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that are displayed or sounded or otherwise provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user. The sensor produces a sensor signal, which is representative of the condition of the user. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused as a bolus and to be removed from the basal delivery of the fluid.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: September 13, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Sami S. Kanderian, Jr., Garry M. Steil
  • Publication number: 20140303552
    Abstract: An infusion system, which may be a closed loop infusion system or “semi-closed-loop” system, uses state variable feedback to control the rate that fluid is infused into the body of a user. The closed loop infusion system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that are displayed or sounded or otherwise provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user. The sensor produces a sensor signal, which is representative of the condition of the user. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused as a bolus and to be removed from the basal delivery of the fluid.
    Type: Application
    Filed: May 13, 2014
    Publication date: October 9, 2014
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: SAMI S. KANDERIAN, JR., GARRY M. STEIL
  • Patent number: 8777924
    Abstract: An infusion system, which may be a closed loop, or “semi-closed-loop”, infusion system, uses state variable feedback to control the rate at which fluid is infused into a user's body. The closed loop system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user and produces a sensor signal which is representative of the user's condition. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, e.g., subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused with a bolus and to be removed from the basal delivery of the fluid.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: July 15, 2014
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sami S. Kanderian, Jr., Garry M. Steil
  • Patent number: 8771222
    Abstract: An infusion system, which may be a closed loop infusion system or “semi-closed-loop” system, uses state variable feedback to control the rate that fluid is infused into the body of a user. The closed loop infusion system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that are displayed or sounded or otherwise provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user. The sensor produces a sensor signal, which is representative of the condition of the user. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused as a bolus and to be removed from the basal delivery of the fluid.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: July 8, 2014
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sami S. Kanderian, Jr., Garry M. Steil
  • Patent number: 8348886
    Abstract: An infusion system, which may be a closed loop infusion system or “semi-closed-loop” system, uses state variable feedback to control the rate that fluid is infused into the body of a user. The closed loop infusion system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that are displayed or sounded or otherwise provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user. The sensor produces a sensor signal, which is representative of the condition of the user. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused as a bolus and to be removed from the basal delivery of the fluid.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: January 8, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sami S. Kanderian, Jr., Garry M. Steil
  • Patent number: 8348923
    Abstract: An infusion system, which may be a closed loop, or “semi-closed-loop”, infusion system, uses state variable feedback to control the rate at which fluid is infused into a user's body. The closed loop system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user and produces a sensor signal which is representative of the user's condition. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, e.g., subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused with a bolus and to be removed from the basal delivery of the fluid.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: January 8, 2013
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sami S. Kanderian, Jr., Garry M. Steil
  • Publication number: 20110282320
    Abstract: A system and method for controlling and monitoring a diabetes-management system through the use of a model that predicts or estimates future dynamic states of glucose and insulin from variables such as insulin delivery or exogenous glucose appearance as well as inherent physiological parameters. The model predictive estimator can be used as an insulin bolus advisor to give an apriori estimate of postprandial glucose for a given insulin delivery profile administered with a known meal to optimize insulin delivery; as a supervisor to monitor the operation of the diabetes-management system; and as a model predictive controller to optimize the automated delivery of insulin into a user's body to achieve a desired blood glucose profile or concentration. Open loop, closed-loop, and semi-closed loop embodiments of the invention utilize a mathematical metabolic model that includes a Minimal Model, a Pump Delivery to Plasma Insulin Model, and a Meal Appearance Rate Model.
    Type: Application
    Filed: June 27, 2011
    Publication date: November 17, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: GARRY M. STEIL, Sami S. Kanderian, JR., Martin T. Cantwell, Udo Hoss
  • Publication number: 20110282321
    Abstract: A system and method for controlling and monitoring a diabetes-management system through the use of a model that predicts or estimates future dynamic states of glucose and insulin from variables such as insulin delivery or exogenous glucose appearance as well as inherent physiological parameters. The model predictive estimator can be used as an insulin bolus advisor to give an apriori estimate of postprandial glucose for a given insulin delivery profile administered with a known meal to optimize insulin delivery; as a supervisor to monitor the operation of the diabetes-management system; and as a model predictive controller to optimize the automated delivery of insulin into a user's body to achieve a desired blood glucose profile or concentration. Open loop, closed-loop, and semi-closed loop embodiments of the invention utilize a mathematical metabolic model that includes a Minimal Model, a Pump Delivery to Plasma Insulin Model, and a Meal Appearance Rate Model.
    Type: Application
    Filed: June 27, 2011
    Publication date: November 17, 2011
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: GARRY M. STEIL, Sami S. Kanderian, JR., Martin T. Cantwell, Udo Hoss
  • Publication number: 20100305545
    Abstract: An infusion system, which may be a closed loop, or “semi-closed-loop”, infusion system, uses state variable feedback to control the rate at which fluid is infused into a user's body. The closed loop system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user and produces a sensor signal which is representative of the user's condition. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, e.g., subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused with a bolus and to be removed from the basal delivery of the fluid.
    Type: Application
    Filed: August 12, 2010
    Publication date: December 2, 2010
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: SAMI S. KANDERIAN, JR., GARRY M. STEIL
  • Patent number: 7806886
    Abstract: An infusion system, which may be a closed loop, or “semi-closed-loop”, infusion system, uses state variable feedback to control the rate at which fluid is infused into a user's body. The closed loop system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user and produces a sensor signal which is representative of the user's condition. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, e.g., subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused with a bolus and to be removed from the basal delivery of the fluid.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: October 5, 2010
    Assignee: Medtronic Minimed, Inc.
    Inventors: Sami S. Kanderian, Jr., Garry M. Steil
  • Publication number: 20100114015
    Abstract: An infusion system, which may be a closed loop infusion system or “semi-closed-loop” system, uses state variable feedback to control the rate that fluid is infused into the body of a user. The closed loop infusion system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that are displayed or sounded or otherwise provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user. The sensor produces a sensor signal, which is representative of the condition of the user. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused as a bolus and to be removed from the basal delivery of the fluid.
    Type: Application
    Filed: May 1, 2009
    Publication date: May 6, 2010
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Sami S. Kanderian, JR., Garry M. Steil
  • Publication number: 20080183060
    Abstract: A system and method for controlling and monitoring a diabetes-management system through the use of a model that predicts or estimates future dynamic states of glucose and insulin from variables such as insulin delivery or exogenous glucose appearance as well as inherent physiological parameters. The model predictive estimator can be used as an insulin bolus advisor to give an apriori estimate of postprandial glucose for a given insulin delivery profile administered with a known meal to optimize insulin delivery; as a supervisor to monitor the operation of the diabetes-management system; and as a model predictive controller to optimize the automated delivery of insulin into a user's body to achieve a desired blood glucose profile or concentration. Open loop, closed-loop, and semi-closed loop embodiments of the invention utilize a mathematical metabolic model that includes a Minimal Model, a Pump Delivery to Plasma Insulin Model, and a Meal Appearance Rate Model.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Garry M. Steil, Sami S. Kanderian, Martin T. Cantwell, Udo Hoss
  • Patent number: 6589190
    Abstract: A method and device for the quantification of muscle tone, particularly the wrist, wherein non-sinusoidal and non ramp trajectories are used to drive the wrist. Equation 1 is utilized determine the stiffness, viscosity and inertial parameters. &tgr;s(t)=KH&thgr;(t)+BH&thgr;(t)+JT&thgr;(t)+&tgr;off  [Eq. 1] wherein where &tgr;s is the total torque, &tgr;off is the offset torque, KH and BH are the angular stiffness and viscosity of the combined flexor and extensor muscle groups that act on the joint, JT is the combined inertia of the oscillating appendage, &thgr; is the angular displacement of the system, and θ . ⁢   ⁢ and ⁢   ⁢ θ ¨ are the velocity and acceleration.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: July 8, 2003
    Assignee: The John Hopkins University
    Inventors: Sami S. Kanderian, Jr., Randal P. Goldberg, Katrina Rieflin Ubell, Barbara J. De Lateur, Louis L. Whitcomb, Fred A. Lenz
  • Publication number: 20020156399
    Abstract: A method and device for the quantification of muscle tone, particularly the wrist, wherein non-sinusoidal and non ramp trajectories are used to drive the wrist. Equation 1 is utilized determine the stiffness, viscosity and inertial parameters.
    Type: Application
    Filed: September 6, 2001
    Publication date: October 24, 2002
    Inventors: Sami S. Kanderian, Randal P. Goldberg, Katrina Rieflin Obell, Barbara J. de Lateur, Louis L. Whitcomb, Fred A. Lenz