Patents by Inventor Samir Kumar Maity

Samir Kumar Maity has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230202953
    Abstract: A fluid catalytic cracking process for p-cresol dimer to produce valuable phenolic monomers, i.e., 2-methyl phenol, 4-methyl phenol, 2,3-xylenol, and phenol, uses an equilibrium catalyst (E-cat) generated in the petroleum fluid catalytic cracking (FCC) unit. The p-cresol dimer can be processed under relatively mild conditions, while maximizing desired and minimizing undesired products.
    Type: Application
    Filed: December 7, 2022
    Publication date: June 29, 2023
    Inventors: Desavath V. Naik, Samir Kumar Maity, Bharat Singh Rana, Pankaj Kumar Kanaujia, Ashish Rana, Deependra Tripathi
  • Patent number: 10857532
    Abstract: Oil soluble organic-inorganic fused slurry phase hydroprocessing catalysts for heavy oils and residues are prepared at supercritical conditions. The hydrodemetallization, hydrodesulfurization, asphaltene conversion and hydrocracking activities of a residue having high percentage of metals, sulfur and asphaltene have been tested in an autoclave batch reactor. The different organic compounds are used to modify the solid fused material (catalyst). The effect of the concentration of modifier on the hydroprocessing and hydrocracking reactions has also been investigated.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: December 8, 2020
    Assignee: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Ravindra Prajapati, Kirtika Kohli, Samir Kumar Maity, Madhukar Onkarnath Garg
  • Patent number: 10745629
    Abstract: Waste plastics are mixed with heavy crude and vacuum residues at temperature within the range from 180-220° C. and the resulting mixture are hydroprocessed to produce lighter products. The hydrodemetallization, asphaltene conversion and hydrocracking activities of the resulting mixture have been tested in an autoclave batch reactor. This process provides a very cheap material and method to upgrade problematic feeds to produce transportation fuels.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: August 18, 2020
    Assignee: Council of Scientific and Industrial Research
    Inventors: Kiritika Kohli, Ravindra Prajapati, Samir Kumar Maity, Madhukar Onkarnath Garg
  • Publication number: 20180201847
    Abstract: Waste plastics are mixed with heavy crude and vacuum residues at temperature within the range from 180-220° C. and the resulting mixture are hydroprocessed to produce lighter products. The hydrodemetallization, asphaltene conversion and hydrocracking activities of the resulting mixture have been tested in an autoclave batch reactor. This process provides a very cheap material and method to upgrade problematic feeds to produce transportation fuels.
    Type: Application
    Filed: January 3, 2018
    Publication date: July 19, 2018
    Inventors: Kiritika Kohli, Ravindra Prajapati, Samir Kumar Maity, Madhukar Onkarnath Garg
  • Patent number: 9901908
    Abstract: An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: February 27, 2018
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Mohan Singh Rana, Jorge Ancheyta Juarez, Patricia Rayo Mayoral, Samir Kumar Maity
  • Publication number: 20160288101
    Abstract: Oil soluble organic-inorganic fused slurry phase hydroprocessing catalysts for heavy oils and residues are prepared at supercritical conditions. The hydrodemetallization, hydrodesulfurization, asphaltene conversion and hydrocracking activities of a residue having high percentage of metals, sulfur and asphaltene have been tested in an autoclave batch reactor. The different organic compounds are used to modify the solid fused material (catalyst). The effect of the concentration of modifier on the hydroprocessing and hydrocracking reactions has also been investigated.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Ravindra Prajapati, Kirtika Kohli, Samir Kumar Maity, Madhukar Onkarnath Garg
  • Patent number: 9387466
    Abstract: This invention reveals a method for synthesizing a hydrotreating catalyst wherein the support is prepared by mixing of peptized alumina with an amorphous silica or crystalline aluminum silicate as one component of the catalyst. The catalyst comprises a group VI metal and/or a group VIII metal of the periodic table. The catalyst exhibits improved hydrocracking, hydrodesulfurization and hydrodemetallization activities and has a relatively stable life with time on stream. Thus, the invention concerns a method for developing a catalyst for hydroprocessing of heavy hydrocarbon feedstocks which is characterized by two steps: the first step consists of the optimization of a catalyst formulation with respect to the textural properties, number of acid sites, active metal incorporation. The second step consists of the evaluation with real feedstock and catalyst stability with time-on-stream.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: July 12, 2016
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Mohan Singh Rana, Jorge Ancheyta Juarez, Zenaida Carolina Leyva Inzunza, Samir Kumar Maity, Léon Pablo Torres Mancera
  • Publication number: 20150321177
    Abstract: An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
    Type: Application
    Filed: July 22, 2015
    Publication date: November 12, 2015
    Inventors: Mohan Singh RANA, Jorge ANCHEYTA JUAREZ, Patricia RAYO MAYORAL, Samir KUMAR MAITY
  • Patent number: 9133401
    Abstract: An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: September 15, 2015
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Mohan Singh Rana, Jorge Ancheyta Juárez, Patricia Rayo Mayoral, Samir Kumar Maity
  • Patent number: 8431018
    Abstract: A supported carbon having high surface area, high pore volume containing (i) molybdenum (ii) a metal of non noble Group VIII, (iii) phosphorous, is used for hydrometallization of heavy crude oil and residue. The catalyst contains about 6 to 15 wt % molybdenum as MoO3, about 1 to 6 wt % cobalt or nickel as CoO or NiO and phosphorus as phosphorous oxide. One characteristic of the catalyst is the portion of pores having pore diameter in the range of 200 to 2000 Angstrom of 20 percent or more. The catalyst prepared by chelating agent has higher hydrodesulfurization activity assuming that more dispersed active metals are present on this catalyst. Long run activity studies show that catalyst having only molybdenum supported on activated carbon has good stability with time-on-stream and very high metal retention capacity.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: April 30, 2013
    Assignees: Instituto Mexicano del Petroleo, Toyo Engineering Corporation
    Inventors: Samir Kumar Maity, Jorge Ancheyta Juárez, Fernando Alonso Martínez, Hidetsugu Fukuyama, Satoshi Terai, Masayuki Uchida
  • Publication number: 20110218097
    Abstract: A catalyst for hydrotreating, especially hydrodesulfurization, of residua and heavy crudes is prepared by synthesizing the support from titanium and boehmite, to form either a titanium/alumina support (TiO2/Al2O3) or a titanium-alumina support (TiO2—Al2O3) that is thereafter provided with at least one hydrogenating metal from group VIB in oxide form and a promoter from group VIII also in oxide form. The (TiO2/Al2O3) support is prepared from boehmite, which is peptized by using an inorganic acid, then extruded, calcined and impregnated with a solution containing titanium, while the (TiO2—Al2O3) support is prepared by admixing boehmite with a titanium-containing solution, peptized using an inorganic acid, extruded and calcined to obtain the titanium-alumina support.
    Type: Application
    Filed: May 13, 2011
    Publication date: September 8, 2011
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Patricia Rayo Mayoral, Jorge Ancheyta Juárez, Jorge Fernando Ramírez Solis, Samir Kumar Maity, Mohan Singh Rana, Fernando Alonso Martínez
  • Patent number: 7968069
    Abstract: A catalyst for hydrotreating, especially hydrodesulfurization, of residua and heavy crudes is prepared by synthesizing the support from titanium and boehmite, to form either a titanium/alumina support (TiO2/Al2O3) or a titanium-alumina support (TiO2—Al2O3) that is thereafter provided with at least one hydrogenating metal from group VIB in oxide form and a promoter from group VIII also in oxide form. The (TiO2/Al2O3) support is prepared from boehmite, which is peptized by using an inorganic acid, then extruded, calcined and impregnated with a solution containing titanium, while the (TiO2—Al2O3) support is prepared by admixing boehmite with a titanium-containing solution, peptized using an inorganic acid, extruded and calcined to obtain the titanium-alumina support.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: June 28, 2011
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Patricia Rayo Mayoral, Jorge Ancheyta Juárez, Jorge Fernando Ramírez Solis, Samir Kumar Maity, Mohan Singh Rana, Fernando Alonso Martínez
  • Publication number: 20110100875
    Abstract: The invention relates to a method for synthesizing a hydroprocessing catalyst, wherein the support is prepared by mixing peptized aluminium with amorphous silica or with crystalline aluminium silicate as a catalyst component. The catalyst comprises a metal from group VIB and/or a metal from group VIIIB of the Periodic Table. The catalyst exhibits enhanced activity vis-à-vis hydrodisintegration, hydrodemetallization and hydrodesulphurization, and has a relatively stable life as a function of run time. Thus, the invention relates to a method for developing a catalyst for hydroprocessing heavy hydrocarbon feedstocks, which is characterized in that it comprises two steps: the first step involves optimization of the catalyst formulation with respect to textural properties, the number of acid sites and incorporation of the active metal; the second step involves evaluation with real feedstocks and the stability of the catalyst as is function of run time.
    Type: Application
    Filed: November 27, 2008
    Publication date: May 5, 2011
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Mohan Singh, Jorge Ancheyta-Juarez, Zenaida Carolina Leyva Inzunza, Samir Kumar Maity
  • Publication number: 20100304963
    Abstract: An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
    Type: Application
    Filed: May 26, 2008
    Publication date: December 2, 2010
    Inventors: Mohan Singh, Jorge Ancheyta Juarez, Patricia Rayo Mayoral, Samir Kumar Maity
  • Publication number: 20100224535
    Abstract: A supported carbon having high surface area, high pore volume containing (i) molybdenum (ii) a metal of non noble Group VIII, (iii) phosphorous, is used for hydrometallization of heavy crude oil and residue. The catalyst contains about 6 to 15 wt % molybdenum as MoO3, about 1 to 6 wt % cobalt or nickel as CoO or NiO and phosphorus as phosphorous oxide. One characteristic of the catalyst is the portion of pores having pore diameter in the range of 200 to 2000 Angstrom of 20 percent or more. The catalyst prepared by chelating agent has higher hydrodesulfurization activity assuming that more dispersed active metals are present on this catalyst. Long run activity studies show that catalyst having only molybdenum supported on activated carbon has good stability with time-on-stream and very high metal retention capacity.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 9, 2010
    Applicants: INSTITUTO MEXICANO DEL PETROLEO, TOYO ENGINEERING CORPORATION
    Inventors: Samir Kumar Maity, Jorge Ancheyta Juárez, Fernando Alonso Martínez, Hidetsugu Fukuyama, Satoshi Terai, Masayuki Uchida