Patents by Inventor Samir Satish Sheth

Samir Satish Sheth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9031092
    Abstract: A computer system and method for transmitting LAN signals over transport systems. LAN signals are generated in any client LAN compliant interface. A transceiver receives the client LAN signal in the LAN format. The client LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client LAN signal to an internal electrical LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical LAN signal is then re-modulated into a second LAN signal. The second LAN signal is then transmitted to a transport system.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: May 12, 2015
    Assignee: Pivotal Decisions LLC
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Patent number: 8750713
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Pivotal Decisions LLC
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Publication number: 20140086583
    Abstract: A computer system and method for transmitting LAN signals over transport systems. LAN signals are generated in any client LAN compliant interface. A transceiver receives the client LAN signal in the LAN format. The client LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client LAN signal to an internal electrical LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical LAN signal is then re-modulated into a second LAN signal. The second LAN signal is then transmitted to a transport system.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 27, 2014
    Applicant: Pivotal Decisions LLC
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Patent number: 8638814
    Abstract: A computer system and method for transmitting LAN signals over transport systems. LAN signals are generated in any client LAN compliant interface. A transceiver receives the client LAN signal in the LAN format. The client LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client LAN signal to an internal electrical LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical LAN signal is then re-modulated into a second LAN signal. The second LAN signal is then transmitted to a transport system.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: January 28, 2014
    Assignee: Pivotal Decisions LLC
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Patent number: 8223795
    Abstract: A computer system and method for transmitting LAN signals over transport systems. LAN signals are generated in any client LAN compliant interface. A transceiver receives the client LAN signal in the LAN format. The client LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client LAN signal to an internal electrical LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical LAN signal is then re-modulated into a second LAN signal. The second LAN signal is then transmitted to a transport system.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: July 17, 2012
    Assignee: Pivotal Decisions LLC
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Publication number: 20120163187
    Abstract: A computer system and method for transmitting LAN signals over transport systems. LAN signals are generated in any client LAN compliant interface. A transceiver receives the client LAN signal in the LAN format. The client LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client LAN signal to an internal electrical LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical LAN signal is then re-modulated into a second LAN signal. The second LAN signal is then transmitted to a transport system.
    Type: Application
    Filed: March 2, 2012
    Publication date: June 28, 2012
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Publication number: 20120155882
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 21, 2012
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 8155519
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 10, 2012
    Assignee: Pivotal Decisions LLC
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Publication number: 20100241913
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Application
    Filed: April 21, 2010
    Publication date: September 23, 2010
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 7782778
    Abstract: This invention provides an apparatus and method to aggregate individual fiber channel data streams in their native mode and to extend connectivity of fiber channel storage area networks across wide geographical distances over a high-speed data channel with forward error correction.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: August 24, 2010
    Inventors: Samir Satish Sheth, Brian Royal, Richard Thomas Hughey, Jeffrey Lloyd Cox, Tom Moore, Kelly Hawkins
  • Patent number: 7729617
    Abstract: The invention is relevant to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the invention teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: June 1, 2010
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 7164692
    Abstract: A computer system and method for transmitting 10 Gigabit Ethernet (10GE) LAN signals over transport systems. Standard 10GE LAN signals are generated in any client IEEE 802.3 10GE LAN compliant interface. A transceiver receives the client 10GE LAN signal in the LAN format. The client 10GE LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client 10GE LAN signal to an internal electrical 10GE LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical 10GE LAN signal is then re-modulated into a second 10GE LAN signal. The second 10GE LAN signal is then transmitted to a transport system.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: January 16, 2007
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Publication number: 20040033079
    Abstract: The invention is relevant to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the invention teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Application
    Filed: June 4, 2003
    Publication date: February 19, 2004
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres
  • Publication number: 20040028408
    Abstract: A computer system and method for transmitting 10 Gigabit Ethernet (10GE) LAN signals over transport systems. Standard 10GE LAN signals are generated in any client IEEE 802.3 10GE LAN compliant interface. A transceiver receives the client 10GE LAN signal in the LAN format. The client 10GE LAN signals are not converted to a SONET transmission format at any time before reaching the transceiver. The transceiver then converts the client 10GE LAN signal to an internal electrical 10GE LAN signal before re-clocking the internal electrical LAN signal. The re-clocked internal electrical 10GE LAN signal is then re-modulated into a second 10GE LAN signal. The second 10GE LAN signal is then transmitted to a transport system.
    Type: Application
    Filed: February 4, 2003
    Publication date: February 12, 2004
    Inventors: Jeffrey Lloyd Cox, Samir Satish Sheth
  • Publication number: 20030235215
    Abstract: The invention provides an apparatus and method for transparently transporting four plesiosynchronous OC-48 signals over a network. Multiple plesiosynchronous data streams are aggregated onto an independent clock source at an ingress circuit through the use of “stuffing” bits. The independent clock is selected such that the output data rate is greater than the composite input data rate of all the plesiosynchronous data streams. The signal is encapsulated with forward error correction at the transport interface, serialized, and modulated across the transport system. An egress circuit at the receiving end recovers the modulated signal and extracts the data stream and timing extraction resulting in a return of the original data frames with the same timing as the originals. In this manner, the timing is reproduced identical to the timing of the incident signal at the ingress path, ensuring the data is identical in content and timing.
    Type: Application
    Filed: March 28, 2003
    Publication date: December 25, 2003
    Inventors: John Robert Carrel, Samir Satish Sheth, Steve Judge, Brian Royal