Patents by Inventor Samuel David Draper

Samuel David Draper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10808680
    Abstract: A method for reducing loads of a wind turbine when a rotor blade of the wind turbine is stuck. The method includes continuously monitoring, via a controller, a loading effect of the stuck rotor blade of the wind turbine. The method also includes providing, via the controller, a predetermined schedule that relates the monitored loading effect of the stuck rotor blade of the wind turbine with a yaw angle for a nacelle of the wind turbine. In addition, the method includes yawing, via the controller, the nacelle of the wind turbine away from an incoming wind direction according to the predetermined schedule.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: October 20, 2020
    Assignee: General Electric Company
    Inventors: Carlos Alberto Concha, Samuel David Draper
  • Publication number: 20200025172
    Abstract: A method for reducing loads of a wind turbine when a rotor blade of the wind turbine is stuck. The method includes continuously monitoring, via a controller, a loading effect of the stuck rotor blade of the wind turbine. The method also includes providing, via the controller, a predetermined schedule that relates the monitored loading effect of the stuck rotor blade of the wind turbine with a yaw angle for a nacelle of the wind turbine. In addition, the method includes yawing, via the controller, the nacelle of the wind turbine away from an incoming wind direction according to the predetermined schedule.
    Type: Application
    Filed: July 17, 2018
    Publication date: January 23, 2020
    Inventors: Carlos Alberto Concha, Samuel David Draper
  • Patent number: 10338202
    Abstract: The present subject matter is directed to a system and method for sequencing Light Detecting and Ranging (LIDAR) sensor beam signals from a LIDAR sensor mounted on a nacelle of a wind turbine with the rotor position of the wind turbine so as to improve signal availability. More specifically, the method includes generating, via the LIDAR sensor, one or more laser signals towards the rotor of the wind turbine, the rotor having one or more rotor blades. The method also includes receiving, via a controller, a rotor position of the rotor of the wind turbine. Thus, the method further includes coordinating, via a control algorithm programmed within the controller, the rotor position with the one or more laser signals of the laser sensor so as to minimize interference between the laser signal(s) and the rotor blades during rotation of the rotor.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: July 2, 2019
    Assignee: General Electric Company
    Inventors: Dale Robert Mashtare, Samuel David Draper, Thomas Stephen Markham, Conner B. Shane, Katherine Derksen Stinson
  • Patent number: 10233908
    Abstract: The present disclosure is directed to systems and methods for de-icing a rotor blade of a wind turbine. The wind turbine has a nacelle mounted atop a tower. The nacelle has a rotor with a rotatable hub having rotor blade mounted thereto. The method includes shutting down the wind turbine in response to detecting ice on the rotor blade. The method also includes positioning the wind turbine in a de-icing position, the de-icing position including at least one of yawing the nacelle of the wind turbine such that the rotor is in a down-wind location of the tower or pitching the rotor blade such that a leading edge of the rotor blade is facing the tower. Another step includes de-icing the rotor blade while the rotor is in the de-icing position.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: March 19, 2019
    Assignee: General Electric Company
    Inventor: Samuel David Draper
  • Patent number: 9835135
    Abstract: A method for controlling a wind turbine may generally include operating the wind turbine at an initial power output that is greater than a rated power output associated with the wind turbine. The wind turbine may have an anticipated operational life at the rated power output. In addition, the method may include decreasing a power output of the wind turbine over time in order to maintain an actual operating life of the wind turbine substantially equal to or greater than the anticipated operational life. A final power output of the wind turbine at an end of the anticipated operating life may be less than the rated power output.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: December 5, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Samuel David Draper
  • Publication number: 20170218926
    Abstract: The present disclosure is directed to systems and methods for de-icing a rotor blade of a wind turbine. The wind turbine has a nacelle mounted atop a tower. The nacelle has a rotor with a rotatable hub having rotor blade mounted thereto. The method includes shutting down the wind turbine in response to detecting ice on the rotor blade. The method also includes positioning the wind turbine in a de-icing position, the de-icing position including at least one of yawing the nacelle of the wind turbine such that the rotor is in a down-wind location of the tower or pitching the rotor blade such that a leading edge of the rotor blade is facing the tower. Another step includes de-icing the rotor blade while the rotor is in the de-icing position.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 3, 2017
    Inventor: Samuel David Draper
  • Publication number: 20170219697
    Abstract: The present subject matter is directed to a system and method for sequencing Light Detecting and Ranging (LIDAR) sensor beam signals from a LIDAR sensor mounted on a nacelle of a wind turbine with the rotor position of the wind turbine so as to improve signal availability. More specifically, the method includes generating, via the LIDAR sensor, one or more laser signals towards the rotor of the wind turbine, the rotor having one or more rotor blades. The method also includes receiving, via a controller, a rotor position of the rotor of the wind turbine. Thus, the method further includes coordinating, via a control algorithm programmed within the controller, the rotor position with the one or more laser signals of the laser sensor so as to minimize interference between the laser signal(s) and the rotor blades during rotation of the rotor.
    Type: Application
    Filed: January 28, 2016
    Publication date: August 3, 2017
    Inventors: Dale Robert Mashtare, Samuel David Draper, Thomas Stephen Markham, Conner B. Shane, Katherine Derksen Stinson
  • Patent number: 9708977
    Abstract: A system includes a turbine having an exhaust flow path through a plurality of turbine stages, wherein the plurality of turbine stages is driven by combustion products flowing through the exhaust flow path, at least one main combustor disposed upstream from the turbine, wherein the at least one main combustor is configured to combust a fuel with a first oxidant and an exhaust gas to generate the combustion products, at least one reheat combustor disposed in or between turbine stages of the turbine, wherein the at least one reheat combustor is configured to reheat the combustion products by adding a second oxidant to react with unburnt fuel in the combustion products, and an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route the exhaust gas from the turbine to the at least one main combustor along an exhaust recirculation path.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: July 18, 2017
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: John Farrior Woodall, Andrei Tristan Evulet, Samuel David Draper
  • Publication number: 20160131029
    Abstract: A method of separating carbon dioxide (CO2) from nitrogen (N2) and oxygen (O2) within a turbine engine system includes, in an exemplary embodiment, directing an air stream into an air separation unit (ASU), separating N2 from the air stream in the ASU to form an oxygen (O2) rich air stream, and directing the O2 rich air stream to the combustor to mix with a fuel for combustion forming hot combustion gases, containing O2 and CO2, which are used to rotate the turbine. The method also includes directing turbine expander exhaust gases to a heat recovery steam generator (HRSG) to create steam, directing exhaust from the HRSG to a condenser to separate water from a mixture of O2 and CO2 gases, and directing the mixture of O2 and CO2 gases to a separation system where the CO2 is separated from the O2 gases and removed from the separation system.
    Type: Application
    Filed: January 19, 2016
    Publication date: May 12, 2016
    Inventors: Parag Prakesh Kulkarni, Samuel David Draper, Roger Allen Shisler
  • Patent number: 9127598
    Abstract: Ambient air is compressed into a compressed ambient gas flow with a main air compressor. The compressed ambient gas flow having a compressed ambient gas flow rate is delivered to a turbine combustor and mixed with a fuel stream having a fuel stream flow rate and a portion of a recirculated low oxygen content gas flow to form a combustible mixture. The combustible mixture is burned and forms the recirculated low oxygen content gas flow that drives a turbine. A portion of the recirculated low oxygen content gas flow is recirculated from the turbine to the turbine compressor using a recirculation loop. The compressed ambient gas flow rate and the fuel stream flow rate are adjusted to achieve substantially stoichiometric combustion. An excess portion, if any, of the compressed ambient gas flow is vented. A portion of the recirculated low oxygen content gas flow is extracted using an extraction conduit.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventors: Daniel David Snook, Lisa Anne Wichmann, Samuel David Draper, Noémie Dion Ouellet
  • Patent number: 9074530
    Abstract: A fuel control system for a gas turbine engine that includes a primary fuel circuit, a fuel tuning circuit, a plurality of combustors connected to the fuel tuning circuit, oxygen and carbon dioxide sensors in the exhaust stream and a feedback control loop operatively connected to the fuel tuning circuit and to the oxygen and carbon monoxide sensors which serve to control the precise amount of fuel and air being fed to each one of the plurality of combustors in the engine. A parallel array of control valves in a tuning fuel circuit connect to corresponding ones of the plurality of combustors in the gas turbine engine. The fuel control system thereby “fine tunes” the amount of fuel and air being fed to each combustor using data regarding the detected oxygen and carbon monoxide concentrations in the exhaust gas as provided through a feedback control loop.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: July 7, 2015
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Samuel David Draper
  • Publication number: 20150175919
    Abstract: A coal treatment system, comprising an advanced coal treatment stage configured to produce ultra clean coal, wherein the stage comprises a leaching agent treatment system configured to remove a mineral from the coal and form a wastewater stream; and a dewatering system in fluid communication with the leaching agent treatment system and configured to reduce a concentration of a contaminant in the wastewater stream, wherein the dewatering system comprises a reverse osmosis membrane in fluid communication with the wastewater stream.
    Type: Application
    Filed: February 27, 2015
    Publication date: June 25, 2015
    Inventors: Samuel David Draper, David Matthew Polizzotti, Chandrashekhar Ganpatrao Sonwane
  • Publication number: 20150115608
    Abstract: A method for controlling a wind turbine may generally include operating the wind turbine at an initial power output that is greater than a rated power output associated with the wind turbine. The wind turbine may have an anticipated operational life at the rated power output. In addition, the method may include decreasing a power output of the wind turbine over time in order to maintain an actual operating life of the wind turbine substantially equal to or greater than the anticipated operational life. A final power output of the wind turbine at an end of the anticipated operating life may be less than the rated power output.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: General Electric Company
    Inventor: Samuel David Draper
  • Patent number: 9003761
    Abstract: In one embodiment, a system is provided that includes a first gas turbine engine. The first gas turbine engine has a first compressor configured to intake air and to produce a first compressed air and a first combustor configured to combust a first mixture to produce a first combustion gas. The first mixture has a first fuel, at least a first portion of the first compressed air, and a second combustion gas from a second gas turbine engine. The first gas turbine engine also includes a first turbine configured to extract work from the first combustion gas.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 14, 2015
    Assignee: General Electric Company
    Inventor: Samuel David Draper
  • Patent number: 8968430
    Abstract: A process for treating coal includes contacting the coal with a leaching agent configured to remove a mineral from the coal; forming a wastewater stream comprising water and a concentration of a contaminant; and contacting the wastewater stream with a first side of a reverse osmosis membrane under pressure, wherein a permeate stream comprising a reduced concentration of the contaminant permeates the reverse osmosis membrane and flows from a second side of the reverse osmosis membrane, and a concentrate stream comprising an increased concentration of the contaminant is retained on the first side of the reverse osmosis membrane.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Samuel David Draper, David Matthew Polizzotti, Chandrashekhar Ganpatrao Sonwane
  • Publication number: 20140182299
    Abstract: A system includes a turbine having an exhaust flow path through a plurality of turbine stages, wherein the plurality of turbine stages is driven by combustion products flowing through the exhaust flow path, at least one main combustor disposed upstream from the turbine, wherein the at least one main combustor is configured to combust a fuel with a first oxidant and an exhaust gas to generate the combustion products, at least one reheat combustor disposed in or between turbine stages of the turbine, wherein the at least one reheat combustor is configured to reheat the combustion products by adding a second oxidant to react with unburnt fuel in the combustion products, and an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route the exhaust gas from the turbine to the at least one main combustor along an exhaust recirculation path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicant: General Electric Company
    Inventors: John Farrior Woodall, Andrei Tristan Evulet, Samuel David Draper
  • Publication number: 20140150402
    Abstract: In one aspect, a combustion system is configured to facilitate preventing the formation of vanadium pentoxide (V2O5) and decrease a concentration of at least one of vanadium trioxide (V2O3) and vanadium tetroxide (V2O4) particles in an exhaust. The combustion system includes a vanadium-containing fuel supply and a combustor. The combustor is configured to generate a combustor exhaust gas including vanadium trioxide (V2O3) and/or vanadium tetroxide (V2O4) particles and to combust a reduced-oxygen mixture including the vanadium-containing fuel, ambient air, and a portion of the combustor exhaust gas. The combustion system also includes a particle separator configured to remove substantially all of the V2O3 and/or V2O4 particles from the combustor exhaust gas. A method for combusting fuel and a power generation system are also provided.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: General Electric Company
    Inventors: Ahmed Mostafa ElKady, Sherif Hatem Abdulla Mohamed, Narendra Digamber Joshi, Hasan Karim, Gilbert Otto Kraemer, Samuel David Draper, Ashwin Raman
  • Patent number: 8726628
    Abstract: A combined cycle power plant includes a compressor section including a compressor inlet and a compressor outlet, and a turbine section operatively connected to the compressor section. The turbine section includes a turbine inlet and a turbine outlet. A heat recovery steam generator (HRSG) is fluidly connected to the turbine outlet. A combustor includes a head end and a combustor discharge. The head end is fluidly connected to the compressor outlet and the combustor discharge is fluidly connected to the turbine inlet. A carbon dioxide collection system is fluidly connected to one of the compressor outlet and the head end of the combustor. The carbon dioxide collection system is configured and disposed to extract a first fluid comprising carbon dioxide and a second fluid from a substantially oxygen free fluid flow passed from the one of the compressor outlet and the head end of the combustor.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 20, 2014
    Assignee: General Electric Company
    Inventors: Lisa Anne Wichmann, Samuel David Draper, Gilbert Otto Kraemer, Alan Meier Truesdale, James Anthony West
  • Patent number: 8713947
    Abstract: A power plant arrangement and method of operation is provided. The power plant arrangement includes at least one main air compressor and at least one gas turbine assembly. Each assembly includes a turbine combustor for mixing a portion of compressed ambient gas with a portion of a recirculated low oxygen content gas flow and a fuel stream for burning to form the recirculated low oxygen content gas flow. A recirculation loop for recirculating at least a portion of the recirculated low oxygen content gas flow from the turbine to a turbine compressor is provided. At least one auxiliary apparatus is fluidly connected to the main air compressor and may be at least partially powered by the compressed ambient gas flow.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: May 6, 2014
    Assignee: General Electric Company
    Inventors: Samuel David Draper, Kenneth William Kohl
  • Patent number: 8479488
    Abstract: A gas turbine includes a compressor with a plurality of pressure plates, a combustor downstream from the compressor, and a turbine downstream from the combustor and axially aligned with the compressor. The combustor produces combustion gases that flow to the turbine. A first manifold connected to the combustor contains a first process gas for combustion in the combustor. A second manifold connected upstream of the turbine contains a second process gas, and a portion of the second process gas flows to the plurality of pressure plates.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: July 9, 2013
    Assignee: General Electric Company
    Inventors: Amit Surendra Toprani, Samuel David Draper