Patents by Inventor Samuel F. Harrison

Samuel F. Harrison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200114570
    Abstract: Methods of additively manufacturing a part comprise dispensing a multi-part filament in three dimensions. The multi-part filament comprises an elongate filament body comprising a first body part extending longitudinally along the elongate filament body and comprising a first material that is configured to be cured responsive to a first cure condition, and a second body part extending longitudinally along the elongate filament body and comprising a second material that is configured to be cured responsive to a second cure condition that is different from the first cure condition. Methods also comprise concurrently with the dispensing, delivering curing energy corresponding to the first cure condition to impart a desired rigidity characteristic to the first body part to facilitate printing of self-supporting structures from the multi-part filament.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Michael Patrick Kozar, Mark Stewart Wilenski, Samuel F. Harrison
  • Patent number: 10618222
    Abstract: A system for additively manufacturing an object comprises feedstock-line supply, delivery guide, and curing mechanism. The feedstock-line supply dispenses a feedstock line that comprises elongate filaments, a resin that covers the elongate filaments, and at least one optical modifier that is interspersed among the elongate filaments. The delivery guide is movable relative to a surface, receives the feedstock line, and deposits it along a print path. The curing mechanism is directs electromagnetic radiation at the exterior surface of the feedstock line after it is deposited along the print path. When the electromagnetic radiation strikes the outer surface of at least one optical modifier, the optical modifier causes the electromagnetic radiation to irradiate, in the interior volume of the feedstock line, the resin that, due at least in part to the elongate filaments, is not directly accessible to the electromagnetic radiation, incident on the exterior surface of the feedstock line.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: April 14, 2020
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Patent number: 10611081
    Abstract: A feedstock line comprises elongate filaments, a resin, and a full-length optical waveguide, comprising a full-length optical core. The full-length optical waveguide is configured such that when electromagnetic radiation enters the full-length optical core via at least one of a first full-length-optical-core end face, a second full-length-optical-core end face, or a full-length peripheral surface that extends between the first full-length-optical-core end face and the second full-length-optical-core end face, at least a portion of the electromagnetic radiation exits the full-length optical core via the full-length peripheral surface to irradiate, in an interior volume of the feedstock line, the resin that, due at least in part to the elongate filaments, is not directly accessible to the electromagnetic radiation, incident on the exterior surface of the feedstock line.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: April 7, 2020
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Patent number: 10603890
    Abstract: A feedstock line comprises elongate filaments, a resin, and a full-length optical waveguide, comprising a full-length optical core. The full-length optical waveguide is configured such that when electromagnetic radiation enters the full-length optical core via at least one of a first full-length-optical-core end face, a second full-length-optical-core end face, or a full-length peripheral surface that extends between the first full-length-optical-core end face and the second full-length-optical-core end face, at least a portion of the electromagnetic radiation exits the full-length optical core via the full-length peripheral surface to irradiate, in an interior volume of the feedstock line, the resin that, due at least in part to the elongate filaments, is not directly accessible to the electromagnetic radiation, incident on the exterior surface of the feedstock line.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: March 31, 2020
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Patent number: 10576683
    Abstract: Multi-part filaments for additive manufacturing comprise an elongate filament body. The elongate filament body comprises a first body part extending longitudinally along the elongate filament body, and a second body part extending longitudinally along the elongate filament body. The first body part comprises a first material, and the second body part comprises a second material. One of the first body part and the second body part is more rigid than the other of the first body part and the second body part and is sufficiently rigid to print self-supporting structures from the multi-part filament.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: March 3, 2020
    Assignee: The Boeing Company
    Inventors: Michael Patrick Kozar, Mark Stewart Wilenski, Samuel F. Harrison
  • Patent number: 10543645
    Abstract: A feedstock line comprises elongate filaments, a resin, and a full-length optical waveguide, comprising a full-length optical core. The full-length optical waveguide is configured such that when electromagnetic radiation enters the full-length optical core via at least one of a first full-length-optical-core end face, a second full-length-optical-core end face, or a full-length peripheral surface that extends between the first full-length-optical-core end face and the second full-length-optical-core end face, at least a portion of the electromagnetic radiation exits the full-length optical core via the full-length peripheral surface to irradiate, in an interior volume of the feedstock line, the resin that, due at least in part to the elongate filaments, is not directly accessible to the electromagnetic radiation, incident on the exterior surface of the feedstock line.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 28, 2020
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Patent number: 10525635
    Abstract: A system for creating a feedstock line for additive manufacturing of an object comprises a prepreg-tow supply, a prepreg-tow separator, an optical-direction-modifier supply, a combiner, and at least one heater. The prepreg-tow supply dispenses a precursor prepreg tow, comprising elongate filaments and resin. The prepreg-tow separator separates the precursor prepreg tow into individual elongate filaments at least partially covered with the resin. The optical-direction-modifier supply dispenses optical direction modifiers to the elongate filaments. When electromagnetic radiation strikes the outer surface of the optical direction modifiers, at least a portion of the electromagnetic radiation departs the outer surface at an angle. The combiner combines the elongate filaments and the optical direction modifiers into a derivative prepreg tow. At least the one heater heats the resin to cause wet-out of the optical direction modifiers and the elongate filaments in the derivative prepreg tow by the resin.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 7, 2020
    Assignee: The Boeing Company
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Patent number: 10350878
    Abstract: A system for additively manufacturing a composite part comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting-resin component. The thermosetting-resin component comprises a first part and a second part. The non-resin component comprises a first element and a second element. The system further comprises a first resin-part applicator, configured to apply the first part to the first element, and a second resin-part applicator, configured to apply the second part to the second element. The system also comprises a feed mechanism, configured to pull the first element through the first resin-part applicator, to pull the second element through the second resin-part applicator, and to push the continuous flexible line out of the delivery guide.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: July 16, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraòn Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10343355
    Abstract: A system for additively manufacturing a composite part (102) comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and a thermosetting resin component that comprises a first part and a second part of a thermosetting resin. The print path is stationary relative to the surface. The delivery guide comprises a first inlet configured to receive the non-resin component, and a second inlet configured to receive at least the first part of the thermosetting resin. The delivery guide is further configured to apply the first part and the second part of the thermosetting resin to the non-resin component. The system 100 further comprises a feed mechanism, configured to push the continuous flexible line out of the delivery guide.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10343330
    Abstract: A system for additively manufacturing a composite part is disclosed. The system comprises a delivery guide, movable relative to a surface. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The print path is stationary relative to the surface. The continuous flexible line comprises a non-resin component and a thermosetting-epoxy-resin component that is partially cured. The system also comprises a feed mechanism, configured to push the continuous flexible line through the delivery guide. The system further comprises a cooling system, configured to maintain the thermosetting-epoxy-resin component of the continuous flexible line below a threshold temperature prior to depositing the segment of the continuous flexible along the print path via the delivery guide.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: July 9, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10279580
    Abstract: A method of additively manufacturing a composite part comprises depositing a segment of a continuous flexible line along a print path. The continuous flexible line comprises a non-resin component and further comprises a photopolymer-resin component that is uncured. The method further comprises delivering a predetermined or actively determined amount of curing energy at least to a portion of the segment of the continuous flexible line at a controlled rate while advancing the continuous flexible line toward the print path and after the segment of the continuous flexible line is deposited along the print path to at least partially cure at least the portion of the segment of the continuous flexible line.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: May 7, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Publication number: 20190105832
    Abstract: Additive manufacturing fiber composites comprise a bundle of elongate fibers and a matrix material that holds or encompasses the elongate fibers of the additive manufacturing fiber tow. The matrix material includes an energy-emissive dopant that emits a curing energy in response to receiving an activating energy. The curing energy effects curing of the solidifiable matrix material so that it solidifies to a rigid or semi-rigid matrix material. Methods of additively manufacturing an article include dispensing an additive manufacturing fiber tow, a solidifiable matrix material, and an energy-emissive dopant to form a solidifiable composite, and applying the activating energy to the energy-emissive dopant to activate the energy-emissive dopant to emit the curing energy. Systems to additively manufacturing an article may be configured to employ such additive manufacturing fiber composites and/or methods.
    Type: Application
    Filed: October 5, 2017
    Publication date: April 11, 2019
    Inventors: Michael Patrick Kozar, Mark Stewart Wilenski, Samuel F. Harrison
  • Publication number: 20190084286
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and a full-length optical waveguide (102), comprising a full-length optical core (110). The full-length optical waveguide (102) is configured such that when electromagnetic radiation (118) enters the full-length optical core (110) via at least one of a first full-length-optical-core end face (112), a second full-length-optical-core end face (114), or a full-length peripheral surface (116) that extends between the first full-length-optical-core end face (112) and the second full-length-optical-core end face (114), at least a portion of the electromagnetic radiation (118) exits the full-length optical core (110) via the full-length peripheral surface (116) to irradiate, in an interior volume (182) of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface (180) of the feedstock line (100).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084251
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and optical direction modifiers (123). The resin (124) covers the elongate filaments (104). The optical direction modifiers (123) are covered by the resin (124) and are interspersed among the elongate filaments (104). Each of the optical direction modifiers (123) has an outer surface (184). Each of the optical direction modifiers (123) is configured such that when electromagnetic radiation (118) strikes the outer surface (184) from a first direction, at least a portion of the electromagnetic radiation (118) departs the outer surface (184) in a second direction that is at an angle to the first direction to irradiate, in the interior volume of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface of the feedstock line.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084243
    Abstract: A system (700) for additively manufacturing an object (136) comprises feedstock-line supply (702), delivery guide (704), and curing mechanism (706). The feedstock-line supply (702) dispenses a feedstock line (100) that comprises elongate fibers (104), a resin (124) that covers the elongate fibers (104), and at least one optical modifier (123) that is interspersed among the elongate filaments (104). The delivery guide (704) is movable relative to a surface (708), receives the feedstock line (100), and deposits it along a print path (705). The curing mechanism (706) is directs electromagnetic radiation (118) at the exterior surface (180) of the feedstock line (100) after it is deposited along the print path (705).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084242
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and a full-length optical waveguide (102), comprising a full-length optical core (110). The full-length optical waveguide (102) is configured such that when electromagnetic radiation (118) enters the full-length optical core (110) via at least one of a first full-length-optical-core end face (112), a second full-length-optical-core end face (114), or a full-length peripheral surface (116) that extends between the first full-length-optical-core end face (112) and the second full-length-optical-core end face (114), at least a portion of the electromagnetic radiation (118) exits the full-length optical core (110) via the full-length peripheral surface (116) to irradiate, in an interior volume (182) of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface (180) of the feedstock line (100).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Publication number: 20190084223
    Abstract: A feedstock line (100) comprises elongate filaments (104), a resin (124), and a full-length optical waveguide (102), comprising a full-length optical core (110). The full-length optical waveguide (102) is configured such that when electromagnetic radiation (118) enters the full-length optical core (110) via at least one of a first full-length-optical-core end face (112), a second full-length-optical-core end face (114), or a full-length peripheral surface (116) that extends between the first full-length-optical-core end face (112) and the second full-length-optical-core end face (114), at least a portion of the electromagnetic radiation (118) exits the full-length optical core (110) via the full-length peripheral surface (116) to irradiate, in an interior volume (182) of the feedstock line (100), the resin (124) that, due at least in part to the elongate filaments (104), is not directly accessible to the electromagnetic radiation (118), incident on the exterior surface (180) of the feedstock line (100).
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Mark Stewart Wilenski, Michael Patrick Kozar, Samuel F. Harrison, Nick Shadbeh Evans, Faraón Torres
  • Patent number: 10232550
    Abstract: A system for additively manufacturing a composite part comprises a delivery assembly, a feed mechanism, and a source of curing energy. The delivery assembly comprises a delivery guide movable relative to a surface and is configured to deposit a continuous flexible line along a print path. The delivery assembly further comprises a first inlet, configured to receive a non-resin component, and a second inlet, configured to receive a photopolymer resin. The delivery assembly applies the photopolymer resin to the non-resin component. The feed mechanism pushes the continuous flexible line out of the delivery guide. The source of the curing energy delivers the curing energy to a portion of the continuous flexible line after it exits the delivery guide.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: March 19, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Patent number: 10232570
    Abstract: A system for additively manufacturing a composite part comprises a delivery guide and a surface, at least one of which is movable relative to another. The delivery guide is configured to deposit at least a segment of a continuous flexible line along a print path. The print path is stationary relative to the surface. The continuous flexible line comprises a non-resin component and a photopolymer-resin component that is partially cured. The system further comprises a feed mechanism configured to push the continuous flexible line through the delivery guide. The system further comprises a source of a curing energy. The source is configured to deliver the curing energy at least to a portion of the segment of the continuous flexible line after the segment of the continuous flexible line exits the delivery guide.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: March 19, 2019
    Assignee: The Boeing Company
    Inventors: Nick S. Evans, Faraón Torres, Ryan G. Ziegler, Samuel F. Harrison, Ciro J. Grijalva, III, Hayden S. Osborn
  • Publication number: 20190047209
    Abstract: Additive manufacturing fiber tows comprise a bundle of elongate fibers. Bindments, which may include particles, elongated bindment segments, coating segments, and/or encircling bindments are interposed among the plural elongate fibers to provide interstitial regions among the plural elongate fibers and the bindments. Methods of additively manufacturing an article with a configuration comprise dispensing the additive manufacturing fiber tow with bindments in multiple successive courses in the configuration to additively manufacture the article. The methods may include fixing the bindments together to hold the article in the configuration with the interstitial regions among the plural elongate fibers and the bindments. A solidifiable matrix material may be applied to the article, including to the interstitial regions, and the solidifiable matrix material may be solidified to form a finished article.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 14, 2019
    Inventors: Michael Patrick Kozar, Mark Stewart Wilenski, Samuel F. Harrison