Patents by Inventor Samuel G. L. Williams

Samuel G. L. Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7405834
    Abstract: An imaging method and associated system for producing high-resolution images. The method includes illuminating an object or scene with coherent radiation such as beams from a laser and then, collecting scattered light with a plurality of subapertures rather than a single large aperture. The method continues with coherently detecting, such as with heterodyne detection, the scattered light to measure the complex amplitude incident on each subaperture and digitally reconstructing images from the coherently detected light for the subapertures. Then digital co-phasing is performed on the subapertures using an image sharpness or quality metric to form an image having the resolution of the total subaperture area. The method may also include determining an aimpoint in the formed image, calculating a phase screen, directing laser beams through the subapertures towards the aimpoint, and co-phasing the laser beams by applying the phase screen to form a single beam.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: July 29, 2008
    Assignee: Lockheed Martin Corporation
    Inventors: Joseph C. Marron, Carl W. Embry, AnnMarie Oien, Duane D. Smith, J. Alex Thomson, James Pete Tucker, Samuel G. L. Williams
  • Patent number: 4621924
    Abstract: An apparatus for indicating misalignment of the optical elements of an optical system (10) comprises a source (11 ) of optical radiation (which is in general nonpolarized), a beam splitter (12), an optical flat (13) and an off-axis beam sampling device (14). The beam splitter (12) divides an input beam (20) from the source (11) into a transmitted component (21) which passes along the optic axis of the optical system (10) to the optical flat (13), and a reflected component (22) which passes to the off-axis beam sampling device (14). The beam sampling device (14) divides the reflected component (22) of the input beam (20) into two angularly separated beams (24) and (25), which are returned to the beam splitter (12). The beam splitter (12) transmits components (24') and (25'), respectively, of the angularly separated beams (24) and (25) to a detector plane (23).
    Type: Grant
    Filed: December 17, 1984
    Date of Patent: November 11, 1986
    Assignee: Lockheed Missiles & Space Company, Inc.
    Inventor: Samuel G. L. Williams
  • Patent number: 4471447
    Abstract: A complex optical system may be maintained in alignment by means of a technique in which an analytical model of the system is utilized which is assumed to be capable of essentially optimal performance. A physical example of the same system design is then assembled and a plurality of performance characteristics are measured related to the intensity function associated with a point source image on the system's focal plane detector array. A plurality of specific adjustments are then calculated by means of a second order approximation technique which would have the effect of degrading the performance of the analytical model to equal that measured for the physical example, whereupon compensating physical adjustments are made to the physical example to improve its measured performance.
    Type: Grant
    Filed: September 8, 1981
    Date of Patent: September 11, 1984
    Assignee: Hughes Aircraft Company
    Inventors: Samuel G. L. Williams, Ning Wu, Brent L. Ellerbroek
  • Patent number: 4471448
    Abstract: A complex optical system may be aligned by means of a technique in which an analytical model of the system is utilized which is assumed to be capable of essentially optimal performance. A physical example of the same system design is then assembled and a plurality of performance characteristics measured. A plurality of specific adjustments are then calculated which would have the effect of degrading the performance of the analytical model to equal that measured for the physical example, whereupon compensating physical adjustments are made to the physical example. For many applications, the performance measurements may relate to aberrations to the wavefront of the point source image quantified by means of a Hartmann mask or the like. In that event, the estimation technique may be a straight-forward linear approximation technique including possible damping and/or weighting factors.
    Type: Grant
    Filed: September 8, 1981
    Date of Patent: September 11, 1984
    Assignee: Hughes Aircraft Company
    Inventor: Samuel G. L. Williams