Patents by Inventor Samuel Mao

Samuel Mao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911492
    Abstract: A unit-dose dentifrice composition includes a soluble fibrous composition and a nonfibrous composition. The soluble fibrous composition includes web forming material and tin ion source. The nonfibrous composition includes abrasive. The abrasive and the tin ion source are in separate locations within the unit-dose dentifrice composition.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: February 27, 2024
    Assignee: The Procter & Gamble Company
    Inventors: Melissa Cherie Payne, Arif Ali Baig, Gregory Charles Gordon, Min Mao, Holly Balasubramanian Rauckhorst, Paul Albert Sagel, Jeanette Marie Swartz, Paul Dennis Trokhan, Brian Patrick Croll, Dinah Achola Nyangiro, Samuel James St. John
  • Patent number: 8853526
    Abstract: Photovoltaic devices are driven by intense photoemission of “hot” electrons from a suitable nanostructured metal. The metal should be an electron source with surface plasmon resonance within the visible and near-visible spectrum range (near IR to near UV (about 300 to 1000 nm)). Suitable metals include silver, gold, copper and alloys of silver, gold and copper with each other. Silver is particularly preferred for its advantageous opto-electronic properties in the near UV and visible spectrum range, relatively low cost, and simplicity of processing.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: October 7, 2014
    Assignee: The Regents of The University of California
    Inventors: Robert Kostecki, Samuel Mao
  • Publication number: 20080092938
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: December 22, 2006
    Publication date: April 24, 2008
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20070164270
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: December 22, 2006
    Publication date: July 19, 2007
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20060118768
    Abstract: A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.
    Type: Application
    Filed: December 2, 2005
    Publication date: June 8, 2006
    Inventors: Gao Liu, Stephen Johnson, John Kerr, Andrew Minor, Samuel Mao
  • Publication number: 20050161662
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: January 20, 2005
    Publication date: July 28, 2005
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan