Patents by Inventor Samuel T. Kim

Samuel T. Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11911128
    Abstract: A mote includes an optical receiver that wirelessly receives a power and data signal in form of NIR light energy within a patient and converts the NIR light energy to an electrical signal having a supply voltage. A control module supplies the supply voltage to power devices of the mote. A clock generation circuit locks onto a target clock frequency based on the power and data signal and generates clock signals. A data recovery circuit sets parameters of one of the devices based on the power and data signal and a first clock signal. An amplifier amplifies a neuron signal detected via an electrode inserted in tissue of the patient. A chip identifier module, based on a second clock signal, generates a recorded data signal based on a mote chip identifier and the neuron signal. A driver transmits the recorded data signal via a LED or a RF transmitter.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: February 27, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: David T. Blaauw, Jamie Phillips, Cynthia Anne Chestek, Taekwang Jang, Hun-Seok Kim, Dennis Sylvester, Jongyup Lim, Eunseong Moon, Michael Barrow, Samuel Nason, Julianna Richie, Paras Patel
  • Patent number: 8911572
    Abstract: A family of iron-based, phosphor-containing bulk metallic glasses having excellent processability and toughness, methods for forming such alloys, and processes for manufacturing articles therefrom are provided. The inventive iron-based alloy is based on the observation that by very tightly controlling the composition of the metalloid moiety of the Fe-based, P-containing bulk metallic glass alloys it is possible to obtain highly processable alloys with surprisingly low shear modulus and high toughness. Further, by incorporating small fractions of silicon (Si) and cobalt (Co) into the Fe—Ni—Mo—P—C—B system, alloys of 3 and 4 mm have been synthesized with high saturation magnetization and low switching losses.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: December 16, 2014
    Assignee: California Institute of Technology
    Inventors: Samuel T. Kim, Marios D. Demetriou, William L. Johnson
  • Publication number: 20120073710
    Abstract: A family of iron-based, phosphor-containing bulk metallic glasses having excellent processability and toughness, methods for forming such alloys, and processes for manufacturing articles therefrom are provided. The inventive iron-based alloy is based on the observation that by very tightly controlling the composition of the metalloid moiety of the Fe-based, P-containing bulk metallic glass alloys it is possible to obtain highly processable alloys with surprisingly low shear modulus and high toughness. Further, by incorporating small fractions of silicon (Si) and cobalt (Co) into the Fe—Ni—Mo—P—C—B system, alloys of 3 and 4 mm have been synthesized with high saturation magnetization and low switching losses.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 29, 2012
    Applicant: California Institute of Technology
    Inventors: Samuel T. Kim, Marios D. Demetriou, William L. Johnson