Patents by Inventor Samuel Tam

Samuel Tam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8119450
    Abstract: A method for forming metallurgical interconnections and polymer adhesion of a flip chip to a substrate includes providing a chip having a set of bumps formed on a bump side thereof and a substrate having a set of interconnect points on a metallization thereon, providing a measured quantity of a polymer adhesive in a middle region of the chip on the bump side, aligning the chip with the substrate so that the set of bumps aligns with the set of interconnect points, pressing the chip and the substrate toward one another so that a portion of the polymer adhesive contacts the substrate and the bumps contact the interconnect points, and heating the bumps to a temperature sufficiently high to form a metallurgical connection between the bumps and the interconnect points. Also, a flip chip package is made by the method. The metallurgical connection includes an alloy of gold and tin at the interface between the bumps and the interconnect points.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: February 21, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Nazir Ahmad, Young-Do Kweon, Samuel Tam, Kyung-Moon Kim, Rajendra D. Pendse
  • Publication number: 20120013005
    Abstract: A method of making a semiconductor device includes providing a substrate and forming a conductive layer on the substrate. The conductive layer includes a first metal. A semiconductor die is provided. A bump is formed on the semiconductor die. The bump includes a second metal. The semiconductor die is positioned proximate to the substrate to contact the bump to the conductive layer and form a bonding interface. The bump and the conductive layer are metallurgically reacted at a melting point of the first metal to dissolve a portion of the second metal from an end of the bump. The bonding interface is heated to the melting point of the first metal for a time sufficient to melt a portion of the first metal from the conductive layer. A width of the conductive layer is no greater than a width of the bump.
    Type: Application
    Filed: September 26, 2011
    Publication date: January 19, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Nazir Ahmad, Young-Do Kwon, Samuel Tam, Kyung-Moon Kim, Rajendra D. Pendse
  • Publication number: 20110007479
    Abstract: A folded system-in-package (SiP) assembly is provided for minimizing the footprint of two corresponding circuit board modules in a handheld electronic device. The assembly includes top and bottom circuit board modules that are electrically interconnected through a flex circuit. Either a plate or wrapped heat spreader may be thermally coupled to the top circuit board module to conduct heat from the heat-generating components mounted to the top circuit board module and to a case of the electronic device.
    Type: Application
    Filed: July 6, 2010
    Publication date: January 13, 2011
    Inventors: Samuel Tam, Younes Shabany
  • Publication number: 20090227072
    Abstract: A method for forming metallurgical interconnections and polymer adhesion of a flip chip to a substrate includes providing a chip having a set of bumps formed on a bump side thereof and a substrate having a set of interconnect points on a metallization thereon, providing a measured quantity of a polymer adhesive in a middle region of the chip on the bump side, aligning the chip with the substrate so that the set of bumps aligns with the set of interconnect points, pressing the chip and the substrate toward one another so that a portion of the polymer adhesive contacts the substrate and the bumps contact the interconnect points, and heating the bumps to a temperature sufficiently high to form a metallurgical connection between the bumps and the interconnect points. Also, a flip chip package is made by the method. In some embodiments the metallurgical connection includes an alloy of gold and tin at the interface between the bumps and the interconnect points.
    Type: Application
    Filed: May 26, 2009
    Publication date: September 10, 2009
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Nazir Ahmad, Young-Do Kweon, Samuel Tam, Kyung-Moon Kim, Rajendra D. Pendse
  • Publication number: 20070236591
    Abstract: A method for manufacturing camera modules including image capture devices with protective covers is disclosed. The method includes providing a unitary transparent substrate including a plurality of individual protective covers, providing a unitary component substrate including a plurality of individual component parts, bonding the unitary transparent substrate to the unitary component substrate, dividing the transparent substrate into a plurality of discrete protective covers, and separating the component parts from one another. According to one particular method, the component substrate is a semiconductor wafer having a plurality of integrated electronic image capture devices formed therein. According to another particular method, the component substrate is a circuit board having a plurality of individual device circuit boards formed therein.
    Type: Application
    Filed: April 11, 2006
    Publication date: October 11, 2007
    Inventors: Samuel Tam, Dongkai Shangguan
  • Publication number: 20070058964
    Abstract: A novel digital camera module includes an image capture device, a lens unit, a housing for receiving the lens unit and positioning the lens unit with respect to the image capture device, and a focus mechanism disposed on the outside of the housing and operative to move the lens unit along an axis when the lens unit is rotated about the axis. In a particular embodiment, the focus mechanism includes at least one ramp formed on the housing and at least one complementary ramp formed on the lens unit. In another embodiment, the focus mechanism includes a thread set formed on the outside of the housing for engaging a complementary thread set on a sleeve of the lens unit. In still another embodiment, the focus mechanism includes an inclined groove formed on one of the housing and the lens unit, and a groove follower disposed on the other of the housing and the lens unit.
    Type: Application
    Filed: September 15, 2005
    Publication date: March 15, 2007
    Inventors: Dongkai Shangguan, Elaine Bogue, Vidyadhar Kale, Samuel Tam, Ray Morton
  • Publication number: 20060255474
    Abstract: A method for forming metallurgical interconnections and polymer adhesion of a flip chip to a substrate includes providing a chip having a set of bumps formed on a bump side thereof and a substrate having a set of interconnect points on a metallization thereon, providing a measured quantity of a polymer adhesive in a middle region of the chip on the bump side, aligning the chip with the substrate so that the set of bumps aligns with the set of interconnect points, pressing the chip and the substrate toward one another so that a portion of the polymer adhesive contacts the substrate and the bumps contact the interconnect points, and heating the bumps to a temperature sufficiently high to form a metallurgical connection between the bumps and the interconnect points. Also, a flip chip package is made by the method. In some embodiments the metallurgical connection includes an alloy of gold and tin at the interface between the bumps and the interconnect points.
    Type: Application
    Filed: June 1, 2006
    Publication date: November 16, 2006
    Applicant: ChipPAC, Inc
    Inventors: Nazir Ahmad, Young-Do Kweon, Samuel Tam, Kyung-Moon Kim, Rajendra Pendse
  • Publication number: 20060132644
    Abstract: An integrated camera module (10, 10a) for capturing video images in very small digital cameras, cell phones, personal digital assistants, and the like. A lens assembly (24, 24a) is rigidly affixed in relation to a sensor array area (14) of a camera chip (12) by a molding (26). The molding (26) is formed on the camera chip (12), and optionally on a printed circuit board (16, 16a) on which the camera chip (12) is mounted. The lens assembly (24, 24a) is held in place in a recess (29) of the molding (26) by an adhesive (28). The molding (26) is formed such that a precise gap (30) exists between the lens assembly (24) and a sensor array area (14) of the camera chip (12). In a particular embodiment, lens holders (306, 506) are formed entirely on the camera chips (302, 502) before or after they are separated from one another.
    Type: Application
    Filed: October 11, 2005
    Publication date: June 22, 2006
    Inventors: Dongkai Shangguan, Vidyadhar Kale, Samuel Tam
  • Publication number: 20050185088
    Abstract: A integrated camera module (10, 10a) for capturing video images in very small digital cameras, cell phones, personal digital assistants, and the like. A lens assembly (24, 24a) is rigidly affixed in relation to a sensor array area (14) of a camera chip (12) by a molding (26). The molding (26) is formed on the camera chip (12), and optionally on a printed circuit board (16, 16a) on which the camera chip (12) is mounted. The lens assembly (24, 24a) is held in place in a recess (29) of the molding (26) by an adhesive (28). The molding (26) is formed such that a precise gap (30) exists between the lens assembly (24) and a sensor array area (14) of the camera chip (12).
    Type: Application
    Filed: February 20, 2004
    Publication date: August 25, 2005
    Inventors: Vidyadhar Kale, Samuel Tam, Dongkai Shangguan
  • Publication number: 20050056944
    Abstract: A chip package achieves miniaturization and excellent high-speed operation by employing flip chip interconnection between the die and the package substrate, and mounting the chip on the same side of the package substrate as the solder balls for the second level interconnection to the printed circuit board. Also, two-die packages have a first die attached to the same surface as the second level interconnect structures and connected using flip chip interconnection, and a second die connected to the opposite surface of the substrate and interconnected either by wire bonding or by flip chip interconnection.
    Type: Application
    Filed: October 7, 2004
    Publication date: March 17, 2005
    Applicant: ChipPAC, Inc.
    Inventors: Rajendra Pendse, Samuel Tam
  • Publication number: 20040222440
    Abstract: A flip chip package is formed by a solid-state bond technique for connecting the input/output pads on the integrated circuit chip and the package substrate. The solid-state bond technique involves a direct mating of metal surfaces, and does not employ any particulate conductive material. Accordingly the connections are capable of carrying very high current, and display good long-term reliability as compared to ACA or ICA particulate interconnects. Moreover the solid-state bond technique does not entail a melting or flow of any interconnecting material. Accordingly the connections can be formed at very fine geometries, typically as low as 70 micrometers pitch.
    Type: Application
    Filed: May 4, 2004
    Publication date: November 11, 2004
    Applicant: ChipPAC, Inc
    Inventors: Rajendra Pendse, Nazir Ahmad, Andrea Chen, Kyung-Moon Kim, Young Do Kweon, Samuel Tam
  • Patent number: 6737295
    Abstract: A flip chip package is formed by a solid-state bond technique for connecting the input/output pads on the integrated circuit chip and the package substrate. The solid-state bond technique involves a direct mating of metal surfaces, and does not employ any particulate conductive material nor any melting or flow of any interconnecting material. Accordingly the connections can be formed at very fine geometries. In another aspect, the space between the surface of the integrated circuit chip and the subjacent surface of the package substrate is filled with a patterned adhesive structure, which consists of one or more adhesive materials that are deployed in a specified pattern in relation to the positions of the second level interconnections between the package and the printed circuit board.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: May 18, 2004
    Assignee: ChipPAC, Inc.
    Inventors: Rajendra Pendse, Nazir Ahmad, Andrea Chen, Kyung-Moon Kim, Young Do Kweon, Samuel Tam
  • Publication number: 20020151189
    Abstract: A flip chip package is formed by a solid-state bond technique for connecting the input/output pads on the integrated circuit chip and the package substrate. The solid-state bond technique involves a direct mating of metal surfaces, and does not employ any particulate conductive material. Accordingly the connections are capable of carrying very high current, and display good long-term reliability as compared to ACA or ICA particulate interconnects. Moreover the solid-state bond technique does not entail a melting or flow of any interconnecting material. Accordingly the connections can be formed at very fine geometries, typically as low as 70 micrometers pitch.
    Type: Application
    Filed: February 22, 2002
    Publication date: October 17, 2002
    Applicant: ChipPAC, Inc.
    Inventors: Rajendra Pendse, Nazir Ahmad, Andrea Chen, Kyung-Moon Kim, Young-Do Kweon, Samuel Tam
  • Publication number: 20020121707
    Abstract: A chip package achieves miniaturization and excellent high-speed operation by employing flip chip interconnection between the die and the package substrate, and mounting the chip on the same side of the package substrate as the solder balls for the second level interconnection to the printed circuit board. Also, two-die packages have a first die attached to the same surface as the second level interconnect structures and connected using flip chip interconnection, and a second die connected to the opposite surface of the substrate and interconnected either by wire bonding or by flip chip interconnection.
    Type: Application
    Filed: February 25, 2002
    Publication date: September 5, 2002
    Applicant: ChipPAC, Inc.
    Inventors: Rajendra Pendse, Samuel Tam
  • Publication number: 20020014702
    Abstract: A method for forming metallurgical interconnections and polymer adhesion of a flip chip to a substrate includes providing a chip having a set of bumps formed on a bump side thereof and a substrate having a set of interconnect points on a metallization thereon, providing a measured quantity of a polymer adhesive in a middle region of the chip on the bump side, aligning the chip with the substrate so that the set of bumps aligns with the set of interconnect points, pressing the chip and the substrate toward one another so that a portion of the polymer adhesive contacts the substrate and the bumps contact the interconnect points, and heating the bumps to a temperature sufficiently high to form a metallurgical connection between the bumps and the interconnect points. Also, a flip chip package is made by the method. In some embodiments the metallurgical connection includes an alloy of gold and tin at the interface between the bumps and the interconnect points.
    Type: Application
    Filed: March 9, 2001
    Publication date: February 7, 2002
    Inventors: Nazir Ahmad, Young-Do Kweon, Samuel Tam, Kyung-Moon Kim, Rajendra D. Pendse