Patents by Inventor Samuel William Lenius

Samuel William Lenius has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10594011
    Abstract: A device is provided that includes a first waveguide configured to guide propagation of RF waves inside the first waveguide. A first side of the first waveguide is configured to emit an evanescent field associated with the propagation of the RF waves inside the first waveguide. The device also includes a second waveguide having a second side positioned within a predetermined distance to the first side of the first waveguide. The second waveguide is configured to guide propagation, inside the second waveguide, of induced RF waves associated with the evanescent field from the first waveguide. The device also includes a first probe coupled to the first waveguide and configured to emit the RF waves for propagation inside the first waveguide. The device also includes a second probe coupled to the second waveguide and configured to receive induced RF waves propagating inside the second waveguide.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: March 17, 2020
    Assignee: Waymo LLC
    Inventors: Pierre-yves Droz, Adam Brown, Daniel L. Rosenband, Samuel William Lenius
  • Patent number: 10581221
    Abstract: A laser diode firing circuit for a light detection and ranging device is disclosed. The firing circuit includes a laser diode coupled in series to a transistor, such that current through the laser diode is controlled by the transistor. The laser diode is configured to emit a pulse of light in response to current flowing through the laser diode. The firing circuit includes a capacitor that is configured to charge via a charging path that includes an inductor and to discharge via a discharge path that includes the laser diode. The transistor controlling current through the laser diode can be a Gallium nitride field effect transistor.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: March 3, 2020
    Assignee: Waymo LLC
    Inventors: Samuel William Lenius, Pierre-yves Droz
  • Publication number: 20200052531
    Abstract: A rotatable LIDAR device including contactless electrical couplings is disclosed. An example rotatable LIDAR device includes a vehicle electrical coupling including (i) a first conductive ring, (ii) a second conductive ring, and (iii) a first coil. The example rotatable LIDAR device further includes a LIDAR electrical coupling including (i) a third conductive ring, (ii) a fourth conductive ring, and (iii) a second coil. The example rotatable LIDAR device still further includes a rotatable LIDAR electrically coupled to the LIDAR electrical coupling. The first conductive ring and the third conductive ring form a first capacitor configured to transmit communications to the rotatable LIDAR, the second conductive ring and the fourth conductive ring form a second capacitor configured to transmit communications from the rotatable LIDAR, and the first coil and the second coil form a transformer configured to provide power to the rotatable LIDAR.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Samuel William Lenius, Pierre-yves Droz
  • Patent number: 10491052
    Abstract: A rotatable LIDAR device including contactless electrical couplings is disclosed. An example rotatable LIDAR device includes a vehicle electrical coupling including (i) a first conductive ring, (ii) a second conductive ring, and (iii) a first coil. The example rotatable LIDAR device further includes a LIDAR electrical coupling including (i) a third conductive ring, (ii) a fourth conductive ring, and (iii) a second coil. The example rotatable LIDAR device still further includes a rotatable LIDAR electrically coupled to the LIDAR electrical coupling. The first conductive ring and the third conductive ring form a first capacitor configured to transmit communications to the rotatable LIDAR, the second conductive ring and the fourth conductive ring form a second capacitor configured to transmit communications from the rotatable LIDAR, and the first coil and the second coil form a transformer configured to provide power to the rotatable LIDAR.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 26, 2019
    Assignee: Waymo LLC
    Inventors: Samuel William Lenius, Pierre-yves Droz
  • Patent number: 10277007
    Abstract: A laser diode firing circuit for a light detection and ranging device is disclosed. The firing circuit includes a laser diode coupled in series to a transistor, such that current through the laser diode is controlled by the transistor. The laser diode is configured to emit a pulse of light in response to current flowing through the laser diode. The firing circuit includes a capacitor that is configured to charge via a charging path that includes an inductor and to discharge via a discharge path that includes the laser diode. The transistor controlling current through the laser diode can be a Gallium nitride field effect transistor.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: April 30, 2019
    Assignee: Waymo LLC
    Inventors: Samuel William Lenius, Pierre-yves Droz
  • Patent number: 10263309
    Abstract: A device is provided that includes a first waveguide configured to guide propagation of RF waves inside the first waveguide. A first side of the first waveguide is configured to emit an evanescent field associated with the propagation of the RF waves inside the first waveguide. The device also includes a second waveguide having a second side positioned within a predetermined distance to the first side of the first waveguide. The second waveguide is configured to guide propagation, inside the second waveguide, of induced RF waves associated with the evanescent field from the first waveguide. The device also includes a first probe coupled to the first waveguide and configured to emit the RF waves for propagation inside the first waveguide. The device also includes a second probe coupled to the second waveguide and configured to receive induced RF waves propagating inside the second waveguide.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: April 16, 2019
    Assignee: Waymo LLC
    Inventors: Pierre-yves Droz, Adam Brown, Daniel L. Rosenband, Samuel William Lenius
  • Patent number: 10234546
    Abstract: A light detection and ranging (LIDAR) system can emit light toward an environment and detect responsively reflected light to determine a distance to one or more points in the environment. The reflected light can be detected by a plurality of plurality of photodiodes that are reverse-biased using a high voltage. Signals from the plurality of reverse-biased photodiodes can be amplified by respective transistors and applied to an analog-to-digital converter (ADC). The signal from a particular photodiode can be applied to the ADC by biasing a respective transistor corresponding to the particular photodiode while not biasing transistors corresponding to other photodiodes. The gain of each photodiode/transistor pair can be controlled by adjusting the bias voltage applied to each photodiode using a digital-to-analog converter. The gain of each photodiode/transistor pair can be controlled based on the detected temperature of each photodiode.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: March 19, 2019
    Assignee: Waymo LLC
    Inventors: Pierre-yves Droz, Samuel William Lenius
  • Patent number: 10141716
    Abstract: A laser diode firing circuit for a light detection and ranging device is disclosed. The firing circuit includes a laser diode coupled in series to a transistor, such that current through the laser diode is controlled by the transistor. The laser diode is configured to emit a pulse of light in response to current flowing through the laser diode. The firing circuit includes a capacitor that is configured to charge via a charging path that includes an inductor and to discharge via a discharge path that includes the laser diode. The transistor controlling current through the laser diode can be a Gallium nitride field effect transistor.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: November 27, 2018
    Assignee: Waymo LLC
    Inventors: Samuel William Lenius, Pierre-yves Droz
  • Publication number: 20180302151
    Abstract: A device is provided that includes a first platform having a first side, and a second platform having a second side positioned within a predetermined distance to the first side. The device also includes an actuator configured to cause a relative rotation between the first platform and the second platform such that the first side of the first platform remains within the predetermined distance to the second side of the second platform. The device also includes a probe mounted to the first platform, and a plurality of probes mounted to the second platform. The device also includes a signal conditioner coupled to the plurality of probes. The signal conditioner may select one of the plurality of probes based on an orientation of the first platform relative to the second platform. The signal conditioner may then to use the selected probe for wireless communication with the probe on the first platform.
    Type: Application
    Filed: June 21, 2018
    Publication date: October 18, 2018
    Inventors: Daniel L. Rosenband, Pierre-Yves Droz, Min Wang, Etai Bruhis, Adam Brown, Samuel William Lenius
  • Publication number: 20180231645
    Abstract: A light detection and ranging (LIDAR) system can emit light toward an environment and detect responsively reflected light to determine a distance to one or more points in the environment. The reflected light can be detected by a plurality of plurality of photodiodes that are reverse-biased using a high voltage. Signals from the plurality of reverse-biased photodiodes can be amplified by respective transistors and applied to an analog-to-digital converter (ADC). The signal from a particular photodiode can be applied to the ADC by biasing a respective transistor corresponding to the particular photodiode while not biasing transistors corresponding to other photodiodes. The gain of each photodiode/transistor pair can be controlled by adjusting the bias voltage applied to each photodiode using a digital-to-analog converter. The gain of each photodiode/transistor pair can be controlled based on the detected temperature of each photodiode.
    Type: Application
    Filed: April 6, 2018
    Publication date: August 16, 2018
    Inventors: Pierre-yves Droz, Samuel William Lenius
  • Patent number: 10033456
    Abstract: A device is provided that includes a first platform having a first side, and a second platform having a second side positioned within a predetermined distance to the first side. The device also includes an actuator configured to cause a relative rotation between the first platform and the second platform such that the first side of the first platform remains within the predetermined distance to the second side of the second platform. The device also includes a probe mounted to the first platform, and a plurality of probes mounted to the second platform. The device also includes a signal conditioner coupled to the plurality of probes. The signal conditioner may select one of the plurality of probes based on an orientation of the first platform relative to the second platform. The signal conditioner may then to use the selected probe for wireless communication with the probe on the first platform.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: July 24, 2018
    Assignee: Waymo LLC
    Inventors: Daniel L. Rosenband, Pierre-Yves Droz, Min Wang, Etai Bruhis, Adam Brown, Samuel William Lenius
  • Publication number: 20180149732
    Abstract: Systems and methods are described that relate to a light detection and ranging (LIDAR) device. The LIDAR device includes a fiber laser configured to emit light within a wavelength range, a scanning portion configured to direct the emitted light in a reciprocating manner about a first axis, and a plurality of detectors configured to sense light within the wavelength range. The device additionally includes a controller configured to receive target information, which may be indicative of an object, a position, a location, or an angle range. In response to receiving the target information, the controller may cause the rotational mount to rotate so as to adjust a pointing direction of the LIDAR. The controller is further configured to cause the LIDAR to scan a field-of-view (FOV) of the environment. The controller may determine a three-dimensional (3D) representation of the environment based on data from scanning the FOV.
    Type: Application
    Filed: January 26, 2018
    Publication date: May 31, 2018
    Inventors: Pierre-yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zach Morriss, Luke Wachter, Dorel Ionut Iordache, William McCann, Daniel Gruver, Bernard Fidric, Samuel William Lenius
  • Patent number: 9979061
    Abstract: A device is provided that includes a first waveguide configured to guide propagation of RF waves inside the first waveguide. A first side of the first waveguide is configured to emit an evanescent field associated with the propagation of the RF waves inside the first waveguide. The device also includes a second waveguide having a second side positioned within a predetermined distance to the first side of the first waveguide. The second waveguide is configured to guide propagation, inside the second waveguide, of induced RF waves associated with the evanescent field from the first waveguide. The device also includes a first probe coupled to the first waveguide and configured to emit the RF waves for propagation inside the first waveguide. The device also includes a second probe coupled to the second waveguide and configured to receive induced RF waves propagating inside the second waveguide.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: May 22, 2018
    Assignee: Waymo LLC
    Inventors: Pierre-yves Droz, Adam Brown, Daniel L. Rosenband, Samuel William Lenius
  • Patent number: 9964632
    Abstract: A light detection and ranging (LIDAR) system can emit light toward an environment and detect responsively reflected light to determine a distance to one or more points in the environment. The reflected light can be detected by a plurality of plurality of photodiodes that are reverse-biased using a high voltage. Signals from the plurality of reverse-biased photodiodes can be amplified by respective transistors and applied to an analog-to-digital converter (ADC). The signal from a particular photodiode can be applied to the ADC by biasing a respective transistor corresponding to the particular photodiode while not biasing transistors corresponding to other photodiodes. The gain of each photodiode/transistor pair can be controlled by adjusting the bias voltage applied to each photodiode using a digital-to-analog converter. The gain of each photodiode/transistor pair can be controlled based on the detected temperature of each photodiode.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: May 8, 2018
    Assignee: Waymo LLC
    Inventors: Pierre-yves Droz, Samuel William Lenius
  • Publication number: 20180118041
    Abstract: A rotatable LIDAR device including contactless electrical couplings is disclosed. An example rotatable LIDAR device includes a vehicle electrical coupling including (i) a first conductive ring, (ii) a second conductive ring, and (iii) a first coil. The example rotatable LIDAR device further includes a LIDAR electrical coupling including (i) a third conductive ring, (ii) a fourth conductive ring, and (iii) a second coil. The example rotatable LIDAR device still further includes a rotatable LIDAR electrically coupled to the LIDAR electrical coupling. The first conductive ring and the third conductive ring form a first capacitor configured to transmit communications to the rotatable LIDAR, the second conductive ring and the fourth conductive ring form a second capacitor configured to transmit communications from the rotatable LIDAR, and the first coil and the second coil form a transformer configured to provide power to the rotatable LIDAR.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 3, 2018
    Inventors: Samuel William Lenius, Pierre-yves Droz
  • Patent number: 9935514
    Abstract: A printed circuit board (PCB) includes a first plurality of conductive paths having first ends at an inner radius of the PCB and second ends at an outer radius of the PCB. The PCB further includes a second plurality of conductive paths having first ends at an outer radius of the PCB and second ends at an inner radius of the PCB. The PCB further includes a first plurality of conductive vias that pass through the PCB at the outer radius of the PCB and couple second ends of the first plurality of conductive paths to first ends of the second plurality of conductive paths. The PCB further includes a second plurality of conductive vias that pass through the PCB at the inner radius of the PCB and electrically couple second ends of the second plurality of conductive paths to first ends of the first plurality of conductive paths.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: April 3, 2018
    Assignee: WAYMO LLC
    Inventors: Samuel William Lenius, Paul Karplus, Alexander Danilo Zbrozek
  • Patent number: 9880263
    Abstract: Systems and methods are described that relate to a light detection and ranging (LIDAR) device. The LIDAR device includes a fiber laser configured to emit light within a wavelength range, a scanning portion configured to direct the emitted light in a reciprocating manner about a first axis, and a plurality of detectors configured to sense light within the wavelength range. The device additionally includes a controller configured to receive target information, which may be indicative of an object, a position, a location, or an angle range. In response to receiving the target information, the controller may cause the rotational mount to rotate so as to adjust a pointing direction of the LIDAR. The controller is further configured to cause the LIDAR to scan a field-of-view (FOV) of the environment. The controller may determine a three-dimensional (3D) representation of the environment based on data from scanning the FOV.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: January 30, 2018
    Assignee: Waymo LLC
    Inventors: Pierre-yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zach Morriss, Luke Wachter, Dorel Ionut Iordache, William McCann, Daniel Gruver, Bernard Fidric, Samuel William Lenius
  • Patent number: 9882433
    Abstract: A rotatable LIDAR device including contactless electrical couplings is disclosed. An example rotatable LIDAR device includes a vehicle electrical coupling including (i) a first conductive ring, (ii) a second conductive ring, and (iii) a first coil. The example rotatable LIDAR device further includes a LIDAR electrical coupling including (i) a third conductive ring, (ii) a fourth conductive ring, and (iii) a second coil. The example rotatable LIDAR device still further includes a rotatable LIDAR electrically coupled to the LIDAR electrical coupling. The first conductive ring and the third conductive ring form a first capacitor configured to transmit communications to the rotatable LIDAR, the second conductive ring and the fourth conductive ring form a second capacitor configured to transmit communications from the rotatable LIDAR, and the first coil and the second coil form a transformer configured to provide power to the rotatable LIDAR.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: January 30, 2018
    Assignee: Waymo LLC
    Inventors: Samuel William Lenius, Pierre-yves Droz
  • Patent number: 9864063
    Abstract: A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: January 9, 2018
    Assignee: Waymo LLC
    Inventors: Daniel Gruver, Pierre-yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zachary Morriss, Luke Wachter, Dorel Ionut Iordache, Rahim Pardhan, William McCann, Bernard Fidric, Samuel William Lenius
  • Patent number: 9778364
    Abstract: A vehicle is provided that includes one or more wheels positioned at a bottom side of the vehicle. The vehicle also includes a first light detection and ranging device (LIDAR) positioned at a top side of the vehicle opposite to the bottom side. The first LIDAR is configured to scan an environment around the vehicle based on rotation of the first LIDAR about an axis. The first LIDAR has a first resolution. The vehicle also includes a second LIDAR configured to scan a field-of-view of the environment that extends away from the vehicle along a viewing direction of the second LIDAR. The second LIDAR has a second resolution. The vehicle also includes a controller configured to operate the vehicle based on the scans of the environment by the first LIDAR and the second LIDAR.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: October 3, 2017
    Assignee: Waymo LLC
    Inventors: Daniel Gruver, Pierre-yves Droz, Gaetan Pennecot, Anthony Levandowski, Drew Eugene Ulrich, Zachary Morriss, Luke Wachter, Dorel Ionut Iordache, Rahim Pardhan, William McCann, Bernard Fidric, Samuel William Lenius