Patents by Inventor Sandeep Dasgupta

Sandeep Dasgupta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10904788
    Abstract: A method, performed by a wireless resource controller, includes receiving an indication that a first wireless device is experiencing data loss over a communication channel provided by a wireless access point utilizing a first radio access technology (RAT). The method includes determining a plurality of congestion window values associated with other wireless devices that share a shared wireless resource with the first wireless device. The shared wireless resource is provided by a base station of a cellular network utilizing a second RAT. The method includes determining an initial congestion window value for the first wireless device based on the plurality of congestion window values associated with the other wireless devices. The method includes transmitting data to the first wireless device from the base station in accordance with the initial congestion window value for the first device in order to satisfy a performance criterion for the first wireless device.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: January 26, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Sandeep Dasgupta, Somaraju Kaki
  • Patent number: 10827395
    Abstract: One or more controllers of a control plane (CP) entity for use in a mobile network (e.g. a mobility management entity or “MME”) may be configured to receive or obtain an indication which indicates whether an eNodeB (eNB) is configured to support Dual Connectivity with New Radio (DCNR), for a 5G Non-Standalone (NSA) architecture deployment. The one or more controllers may be further configured to select, based on the indication, one of a plurality of serving gateways (SGWs) for a session of a user equipment (UE) served by the eNB. Additional information may be used as a basis for the SGW selection, including UE capability and UE subscription data. For example, when the indication indicates that the eNB is configured to support DCNR and the UE capability and subscription data indicate 5G capability, a 5G-capable SGW may be selected but otherwise a legacy (non-5G) SGW may be selected.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: November 3, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Sandeep Dasgupta, Mantha Ravi Sankar
  • Publication number: 20200296647
    Abstract: Systems, methods, and computer-readable media are provided for optimizing user plane node selection process during a process of handing over user equipment between two communication networks. In one aspect, a method includes receiving, at a network component, a session creation request for handing over the user equipment, the user equipment having a current active communication session within a first communication network with a first node of the first communication network, the session creation request including an identifier of the first node; receiving, at the network component, a list of candidates to serve as a user plane serving gateway for the user equipment in the second communication network; and selecting, by the network component and based on at least the identifier of the first node, the first node from the list of candidates to serve as the user plane serving gateway for the user equipment in the second communication network.
    Type: Application
    Filed: May 29, 2020
    Publication date: September 17, 2020
    Inventors: Somaraju Kaki, Sandeep Dasgupta
  • Patent number: 10750553
    Abstract: A disclosed method is performed at a first node providing mobile services to a user equipment (UE) over an access network (AN). The first node receives a setup request from UE to be connected to a network over an AN. The first node then sends a fully qualified domain name (FQDN) of the first node over a first interface terminated by the first node to an access and mobility management function (AMF). The first node further triggers the AMF to transmit a session establishment request to a session management function (SMF) including the FQDN of the first node, where in response, the SMF selects second node(s) in the network collocated with the first node based at least in part on a topology match of FQDNs. The first node then provides UE access to the network over the AN through the collocated first node and the node(s).
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: August 18, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Mantha Ravi Sankar, Sandeep Dasgupta
  • Patent number: 10735209
    Abstract: Disclosed are technologies for optimally utilizing 5G-NSA network resources via an Aggregate Maximum Bitrate (AMBR) feedback mechanism. A User Equipment (UE) is registered with a 5G-NSA network environment and a 5G AMBR is negotiated. A bearer-specific timer is triggered in response to detecting one or more data flows to the UE. Next, a Secondary Radio Access Technology (RAT) Data Usage Report is monitored for. In response to the bearer-specific timer expiring without a Secondary RAT Data Usage Report being received, it is determined that the UE is not currently being served by a 5G RAT. Subsequently, local rate limiting is performed to reduce the negotiated 5G AMBR to a limited AMBR having a lower bitrate than the negotiated 5G AMBR. The UE connection to the 5G-NSA network environment is then configured with the limited AMBR.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: August 4, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Somaraju Kaki, Sandeep Dasgupta
  • Patent number: 10728817
    Abstract: Systems, methods, and computer-readable media are provided for optimizing user plane node selection process during a process of handing over user equipment between two communication networks. In one aspect, a method includes receiving, at a network component, a session creation request for handing over the user equipment, the user equipment having a current active communication session within a first communication network with a first node of the first communication network, the session creation request including an identifier of the first node; receiving, at the network component, a list of candidates to serve as a user plane serving gateway for the user equipment in the second communication network; and selecting, by the network component and based on at least the identifier of the first node, the first node from the list of candidates to serve as the user plane serving gateway for the user equipment in the second communication network.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: July 28, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Somaraju Kaki, Sandeep Dasgupta
  • Publication number: 20200120550
    Abstract: In one embodiment, a method is performed. A mobility management entity (MME) may determine a network capability. The MME may query a domain name server (DNS) for a plurality of candidate MMEs having the network capability. The MME may select a target MME from the plurality of candidate MMEs.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Inventors: Raghavendra NARAYANAPPA, Sandeep DASGUPTA
  • Publication number: 20200100303
    Abstract: A disclosed method is performed at a first node providing mobile services to a user equipment (UE) over an access network (AN). The first node receives a setup request from UE to be connected to a network over an AN. The first node then sends a fully qualified domain name (FQDN) of the first node over a first interface terminated by the first node to an access and mobility management function (AMF). The first node further triggers the AMF to transmit a session establishment request to a session management function (SMF) including the FQDN of the first node, where in response, the SMF selects second node(s) in the network collocated with the first node based at least in part on a topology match of FQDNs. The first node then provides UE access to the network over the AN through the collocated first node and the node(s).
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Inventors: Mantha Ravi SANKAR, Sandeep DASGUPTA
  • Publication number: 20200092759
    Abstract: One or more controllers of a control plane (CP) entity for use in a mobile network (e.g. a mobility management entity or “MME”) may be configured to receive or obtain an indication which indicates whether an eNodeB (eNB) is configured to support Dual Connectivity with New Radio (DCNR), for a 5G Non-Standalone (NSA) architecture deployment. The one or more controllers may be further configured to select, based on the indication, one of a plurality of serving gateways (SGWs) for a session of a user equipment (UE) served by the eNB. Additional information may be used as a basis for the SGW selection, including UE capability and UE subscription data. For example, when the indication indicates that the eNB is configured to support DCNR and the UE capability and subscription data indicate 5G capability, a 5G-capable SGW may be selected but otherwise a legacy (non-5G) SGW may be selected.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 19, 2020
    Inventors: Sandeep DASGUPTA, Mantha Ravi SANKAR
  • Publication number: 20200052916
    Abstract: Disclosed are technologies for optimally utilizing 5G-NSA network resources via an Aggregate Maximum Bitrate (AMBR) feedback mechanism. A User Equipment (UE) is registered with a 5G-NSA network environment and a 5G AMBR is negotiated. A bearer-specific timer is triggered in response to detecting one or more data flows to the UE. Next, a Secondary Radio Access Technology (RAT) Data Usage Report is monitored for. In response to the bearer-specific timer expiring without a Secondary RAT Data Usage Report being received, it is determined that the UE is not currently being served by a 5G RAT. Subsequently, local rate limiting is performed to reduce the negotiated 5G AMBR to a limited AMBR having a lower bitrate than the negotiated 5G AMBR. The UE connection to the 5G-NSA network environment is then configured with the limited AMBR.
    Type: Application
    Filed: August 8, 2018
    Publication date: February 13, 2020
    Inventors: Somaraju Kaki, Sandeep Dasgupta
  • Publication number: 20190124547
    Abstract: A method, performed by a wireless resource controller, includes receiving an indication that a first wireless device is experiencing data loss over a communication channel provided by a wireless access point utilizing a first radio access technology (RAT). The method includes determining a plurality of congestion window values associated with other wireless devices that share a shared wireless resource with the first wireless device. The shared wireless resource is provided by a base station of a cellular network utilizing a second RAT. The method includes determining an initial congestion window value for the first wireless device based on the plurality of congestion window values associated with the other wireless devices. The method includes transmitting data to the first wireless device from the base station in accordance with the initial congestion window value for the first device in order to satisfy a performance criterion for the first wireless device.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 25, 2019
    Inventors: Sandeep Dasgupta, Somaraju Kaki
  • Patent number: 9992705
    Abstract: Techniques are presented that ensure Quality of Service (QoS) for Wi-Fi® calling and other Internet Media Services (IMS) when a user connects from a carrier-operated public Wi-Fi network to an IMS. A first packet including a domain name system (DNS) request received from a wireless mobile device via an access point is intercepted at a networking device. A network address of a collocated gateway device associated with the networking device is sent to the wireless mobile device in response to the DNS request. A second packet is received from the wireless mobile device including the network address of the collocated gateway to establish a network communication via the collocated gateway device. First QoS parameters associated with the network communication are received from the collocated gateway device and a notification message is sent to the access point, the notification message including the first QoS parameters.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 5, 2018
    Assignee: Cisco Technology, Inc.
    Inventors: Mantha Ravi Sankar, Sandeep Dasgupta
  • Publication number: 20170111826
    Abstract: Techniques are presented that ensure Quality of Service (QoS) for Wi-Fi® calling and other Internet Media Services (IMS) when a user connects from a carrier-operated public Wi-Fi network to an IMS. A first packet including a domain name system (DNS) request received from a wireless mobile device via an access point is intercepted at a networking device. A network address of a collocated gateway device associated with the networking device is sent to the wireless mobile device in response to the DNS request. A second packet is received from the wireless mobile device including the network address of the collocated gateway to establish a network communication via the collocated gateway device. First QoS parameters associated with the network communication are received from the collocated gateway device and a notification message is sent to the access point, the notification message including the first QoS parameters.
    Type: Application
    Filed: October 16, 2015
    Publication date: April 20, 2017
    Inventors: Mantha Ravi Sankar, Sandeep Dasgupta