Patents by Inventor Sandeep S. IYER

Sandeep S. IYER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11022792
    Abstract: Aspects of the embodiments are directed to coupling a permanent magnet (PM) with a microelectromechanical systems (MEMS) device. In embodiments, an adhesive, such as an epoxy or resin or other adhesive material, can be used to move the PM towards the MEMS device to magnetically couple the PM to the MEMS device. In embodiments, an adhesive that is configured to shrink up on curing can be applied (e.g., using a pick and place tool) to a location between the MEMS device and the PM. As a result of curing, the adhesive can pull the PM towards the MEMS device. In embodiments, an adhesive that is configured to expand as a result of curing can be applied to a location between the PM and a sidewall of the chassis. As a result of curing, the adhesive can push the PM towards the MEMS device. The adhesive can also secure the PM in place.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: June 1, 2021
    Assignee: Intel Corporation
    Inventors: Kyle Yazzie, Anna M. Prakash, Suriyakala Ramalingam, Liwei Wang, Robert Starkston, Arnab Choudhury, Sandeep S. Iyer, Amanuel M. Abebaw, Nick Labanok
  • Publication number: 20190391386
    Abstract: Aspects of the embodiments are directed to coupling a permanent magnet (PM) with a microelectromechanical systems (MEMS) device. In embodiments, an adhesive, such as an epoxy or resin or other adhesive material, can be used to move the PM towards the MEMS device to magnetically couple the PM to the MEMS device. In embodiments, an adhesive that is configured to shrink up on curing can be applied (e.g., using a pick and place tool) to a location between the MEMS device and the PM. As a result of curing, the adhesive can pull the PM towards the MEMS device. In embodiments, an adhesive that is configured to expand as a result of curing can be applied to a location between the PM and a sidewall of the chassis. As a result of curing, the adhesive can push the PM towards the MEMS device. The adhesive can also secure the PM in place.
    Type: Application
    Filed: December 27, 2016
    Publication date: December 26, 2019
    Applicant: Intel Corporation
    Inventors: Kyle Yazzie, Anna M. Prakash, Suriyakala Ramalingam, Liwei Wang, Robert Starkston, Arnab Choudhury, Sandeep S. Iyer, Amanuel M. Abebaw, Nick Labanok
  • Patent number: 10317952
    Abstract: An apparatus is provided which comprises: a chassis compartment having a bottom surface and walls orthogonal to the bottom, wherein the chassis compartment comprises: a rectangular opening, which may be designed to accept a microelectromechanical (MEMS) device and four slots, which may be designed to accept one or more magnet(s), extending outwardly from the rectangular opening, wherein each of the slots comprises: an inner opening having a length coextensive with a side of the rectangular opening, and an outer opening having corresponding ends that extend a length of the outer opening beyond the length of the inner opening. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Sandeep S. Iyer, Amanuel Abebaw, Mark Saltas, Mayank Patel, Charavana K. Gurumurthy, Suriyakala Ramalingam, Vladimir Malamud
  • Patent number: 10125013
    Abstract: Apparatuses, systems, and methods associated with placement of magnets within a microelectromechanical system device are disclosed herein. In embodiments, a method of affixing at least one magnet in a microelectromechanical system, may include affixing an electromagnetic actuator to a base structure of the microelectromechanical system, the affixing including affixing the electromagnetic actuator within a recess formed in the base structure. The method may further include placing a magnet within the recess, wherein the recess includes at least a portion of a spring, the spring affixed to the base structure and extending into the recess, the placing including placing the magnet on a side of the electromagnetic actuator, between the spring and the side of the electromagnetic actuator, the spring pressing the magnet against the side of the electromagnetic actuator and maintaining a position of the magnet in response to the placing the magnet within the recess.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: November 13, 2018
    Assignee: Intel Corporation
    Inventors: Robert Starkston, Amanuel M. Abebaw, Liwei Wang, Mark Saltas, Sandeep S. Iyer, Nick Labanok
  • Publication number: 20180134547
    Abstract: Apparatuses, systems, and methods associated with placement of magnets within a microelectromechanical system device are disclosed herein. In embodiments, a method of affixing at least one magnet in a microelectromechanical system, may include affixing an electromagnetic actuator to a base structure of the microelectromechanical system, the affixing including affixing the electromagnetic actuator within a recess formed in the base structure. The method may further include placing a magnet within the recess, wherein the recess includes at least a portion of a spring, the spring affixed to the base structure and extending into the recess, the placing including placing the magnet on a side of the electromagnetic actuator, between the spring and the side of the electromagnetic actuator, the spring pressing the magnet against the side of the electromagnetic actuator and maintaining a position of the magnet in response to the placing the magnet within the recess.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 17, 2018
    Inventors: Robert Starkston, Amanuel M. Abebaw, Liwei Wang, Mark Saltas, Sandeep S. Iyer, Nick Labanok
  • Publication number: 20180095503
    Abstract: An apparatus is provided which comprises: a chassis compartment having a bottom surface and walls orthogonal to the bottom, wherein the chassis compartment comprises: a rectangular opening, which may be designed to accept a microelectromechanical (MEMS) device and four slots, which may be designed to accept one or more magnet(s), extending outwardly from the rectangular opening, wherein each of the slots comprises: an inner opening having a length coextensive with a side of the rectangular opening, and an outer opening having corresponding ends that extend a length of the outer opening beyond the length of the inner opening. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Sandeep S. IYER, Amanuel ABEBAW, Mark SALTAS, Mayank PATEL, Charavana K. GURUMURTHY, Suriyakala RAMALINGAM, Vladimir MALAMUD