Patents by Inventor Sandra J. Rosenthal

Sandra J. Rosenthal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10167193
    Abstract: Disclosed herein are ferroelectric agglomerates and methods related thereto. In certain aspects, the ferroelectric agglomerates can be made from particles that have been treated with SbX3 or SbX5, wherein X is a halogen. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: January 1, 2019
    Assignee: Vanderbilt University
    Inventors: Sandra J. Rosenthal, Toshia Wrenn
  • Publication number: 20160087191
    Abstract: Disclosed herein are ferroelectric agglomerates and methods related thereto. In certain aspects, the ferroelectric agglomerates can be made from particles that have been treated with SbX3 or SbX5, wherein X is a halogen. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 24, 2016
    Inventors: Sandra J. Rosenthal, Toshia Wrenn
  • Patent number: 9236572
    Abstract: Inorganic photoluminescent nanoparticles comprising a solid assembly comprising a first plurality of atoms from group II crystallized with a second plurality of atoms from group VI; at least one dimension of the assembly less than about 3.0 nm; and one or more organocarboxylate agents coupled to a surface that bounds the assembly, wherein the nanocrystal exhibits nanocrystal photoluminescence quantum yield of at least about 10%. Coupling to such surface comprises coating at least a portion of the nanocrystal being coated with the organocarboxylate agent, wherein the organocarboxylate agent is a carboxylic acid or the conjugate base of a carboxylic acid. The carboxylic acid can be is selected from formic acid, acetic acid, hexanoic acid, octanoic acid, oleic acid, and benzoic acid. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: January 12, 2016
    Assignee: Vanderbilt University
    Inventors: Teresa E. Tilyou, James R. McBride, Sandra J. Rosenthal
  • Patent number: 8784698
    Abstract: Disclosed are inorganic nanoparticles comprising a body comprising cadmium and/or zinc crystallized with selenium, sulfur, and/or tellurium; a multiplicity of phosphonic acid ligands comprising at least about 20% of the total surface ligand coverage; wherein the nanocrystal is capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the maximum absorbance wavelength of the first electromagnetic region is different from the maximum emission wavelength of the second electromagnetic region, thereby providing a Stokes shift of at least about 20 nm, wherein the second electromagnetic region comprises an at least about 100 nm wide band of wavelengths, and wherein the nanoparticle exhibits has a quantum yield of at least about 10%. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: July 22, 2014
    Assignee: Vanderbilt University
    Inventors: Michael A. Schreuder, James R. McBride, Sandra J. Rosenthal
  • Patent number: 8747801
    Abstract: Disclosed herein are methods of preparing inorganic nanoparticles. In one aspect, the methods can comprise heating a reaction mixture comprising a C8 to C20 alkyl- or arylphosphonic acid and a source of cadmium or zinc to a temperature of greater than about 300° C.; adding to the reaction mixture an injection mixture comprising a C2 to C16 trialkyl- or triarylphosphine and a source of selenium, sulfur, or tellurium; and decreasing the temperature of the reaction mixture to less than about 300° C. Also disclosed herein are nanoparticles made from the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: June 10, 2014
    Assignee: Vanderbilt University
    Inventors: Michael J. Bowers, James R. McBride, Sandra J. Rosenthal
  • Publication number: 20140046083
    Abstract: Inorganic photoluminescent nanoparticles comprising a solid assembly comprising a first plurality of atoms from group II crystallized with a second plurality of atoms from group VI; at least one dimension of the assembly less than about 3.0 nm; and one or more organocarboxylate agents coupled to a surface that bounds the assembly, wherein the nanocrystal exhibits nanocrystal photoluminescence quantum yield of at least about 10%. Coupling to such surface comprises coating at least a portion of the nanocrystal being coated with the organocarboxylate agent, wherein the organocarboxylate agent is a carboxylic acid or the conjugate base of a carboxylic acid. The carboxylic acid can be is selected from formic acid, acetic acid, hexanoic acid, octanoic acid, oleic acid, and benzoic acid. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: February 17, 2012
    Publication date: February 13, 2014
    Applicant: Vanderbilt University
    Inventors: Teresa E Tilyou, James R. McBride, Sandra J. Rosenthal
  • Patent number: 8647827
    Abstract: The invention is based on the finding that IDT307 and analogs thereof are fluorescent substrates transported by several neurotransmitter transporters. Provided are methods for the analysis of neurotransmitter transport and binding using IDT307 and its analogs. The invention also provides rapid methods for screening for modulators of neurotransmitter transport.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: February 11, 2014
    Assignee: Vanderbilt University
    Inventors: Randy D. Blakely, John N. Mason, Ian D. Tomlinson, Sandra J. Rosenthal
  • Publication number: 20130236388
    Abstract: In one aspect, the invention relates to an inorganic nanoparticle or nanocrystal, also referred to as a quantum dot, capable of emitting white light. In a further aspect, the invention relates to an inorganic nanoparticle capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the second electromagnetic region comprises an at least about 50 nm wide band of wavelengths and to methods for the preparation thereof. In further aspects, the invention relates to a frequency converter, a light emitting diode device, a modified fluorescent light source, an electroluminescent device, and an energy cascade system comprising the nanoparticle of the invention. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: November 16, 2012
    Publication date: September 12, 2013
    Inventors: Michael J. Bowers, James R. McBride, Sandra J. Rosenthal
  • Patent number: 8337721
    Abstract: In one aspect, the invention relates to an inorganic nanoparticle or nanocrystal, also referred to as a quantum dot, capable of emitting white light. In a further aspect, the invention relates to an inorganic nanoparticle capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the second electromagnetic region comprises an at least about 50 nm wide band of wavelengths and to methods for the preparation thereof. In further aspects, the invention relates to a frequency converter, a light emitting diode device, a modified fluorescent light source, an electroluminescent device, and an energy cascade system comprising the nanoparticle of the invention. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: December 25, 2012
    Assignee: Vanderbilt University
    Inventors: Michael J. Bowers, James R. McBride, Sandra J. Rosenthal
  • Publication number: 20110229910
    Abstract: The invention is based on the finding that IDT307 and analogs thereof are fluorescent substrates transported by several neurotransmitter transporters. Provided are methods for the analysis of neurotransmitter transport and binding using IDT307 and its analogs. The invention also provides rapid methods for screening for modulators of neurotransmitter transport.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 22, 2011
    Inventors: Randy D. Blakely, John N. Mason, Ian D. Tomlinson, Sandra J. Rosenthal
  • Publication number: 20110223425
    Abstract: Disclosed are inorganic nanoparticles comprising a body comprising cadmium and/or zinc crystallized with selenium, sulfur, and/or tellurium; a multiplicity of phosphonic acid ligands comprising at least about 20% of the total surface ligand coverage; wherein the nanocrystal is capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the maximum absorbance wavelength of the first electromagnetic region is different from the maximum emission wavelength of the second electromagnetic region, thereby providing a Stokes shift of at least about 20 nm, wherein the second electromagnetic region comprises an at least about 100 nm wide band of wavelengths, and wherein the nanoparticle exhibits has a quantum yield of at least about 10%. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: May 24, 2011
    Publication date: September 15, 2011
    Inventors: Michael A. Schreuder, James R. McBride, Sandra J. Rosenthal
  • Patent number: 7947255
    Abstract: The invention is based on the finding that IDT307 and analogs thereof are fluorescent substrates transported by several neurotransmitter transporters. Provided are methods for the analysis of neurotransmitter transport and binding using IDT307 and its analogs. The invention also provides rapid methods for screening for modulators of neurotransmitter transport.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: May 24, 2011
    Assignee: Vanderbilt University
    Inventors: Randy D. Blakely, John N. Mason, Ian D. Tomlinson, Sandra J. Rosenthal
  • Publication number: 20110049442
    Abstract: Disclosed are inorganic nanoparticles comprising a body comprising cadmium and/or zinc crystallized with selenium, sulfur, and/or tellurium; a multiplicity of phosphonic acid ligands comprising at least about 20% of the total surface ligand coverage; wherein the nanocrystal is capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the maximum absorbance wavelength of the first electromagnetic region is different from the maximum emission wavelength of the second electromagnetic region, thereby providing a Stokes shift of at least about 20 nm, wherein the second electromagnetic region comprises an at least about 100 nm wide band of wavelengths, and wherein the nanoparticle exhibits has a quantum yield of at least about 10%. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: March 30, 2010
    Publication date: March 3, 2011
    Inventors: Michael A. Schreuder, James R. McBride, Sandra J. Rosenthal