Patents by Inventor Sandy K. Wixon

Sandy K. Wixon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8838254
    Abstract: This disclosure describes techniques for configuring an IMD into the exposure operating mode. Prior to a medical procedure that generates a disruptive energy field, such as an MRI scan, an electronic prescription is configured to indicate that the IMD is authorized for the medical procedure that includes a disruptive energy field. The electronic prescription includes one or more designated bits within a storage element of the IMD. When the patient in which the IMD is implanted arrives for the medical procedure, a user (such as an MRI operator) interacts with a telemetry device to determine whether the electronic prescription is configured. Upon determining that the electronic prescription is configured, the IMD transitions into the exposure operating mode designed for operation in the disruptive energy field. In this manner, the electronic prescription confirms to the user that that the IMD has been checked for suitability for operation during the medical procedure.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: September 16, 2014
    Assignee: Medtronic, Inc.
    Inventors: Lawrence C. McClure, Sandy K. Wixon, Sean S. Josephson, Michael L. Ellingson, Hyun J. Yoon
  • Patent number: 8761886
    Abstract: Techniques are described for controlling effects caused when an implantable medical device (IMD) is subject to a disruptive energy field. The IMD may include an implantable lead that includes one or more electrodes. The IMD may further include a first component having a parasitic inductance. The IMD may further include a second component having a reactance. In some examples, the reactance of the second component may be selected based on the parasitic inductance of the first component such that an amount of energy reflected along the lead in response to energy produced by an electromagnetic energy source is below a selected threshold. In additional examples, the parasitic inductance of the first component and the reactance of the second component are configured such that an amount of energy reflected along the lead in response to a frequency of electromagnetic energy is below a selected threshold.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: June 24, 2014
    Assignee: Medtronic, Inc.
    Inventors: Christopher C. Stancer, Piotr J. Przybyszewski, Sandy K. Wixon, Joel Peltier, Sung-Min Park, David E. Manahan, Jonathan Edmonson, Ben W. Herberg
  • Patent number: 8494649
    Abstract: Techniques are described for controlling effects caused when an implantable medical device (IMD) is subject to a disruptive energy field. The IMD may include an implantable lead that includes one or more electrodes. The IMD may further include a first component having a parasitic inductance. The IMD may further include a second component having a reactance. In some examples, the reactance of the second component may be selected based on the parasitic inductance of the first component such that an amount of energy reflected along the lead in response to energy produced by an electromagnetic energy source is below a selected threshold. In additional examples, the parasitic inductance of the first component and the reactance of the second component are configured such that an amount of energy reflected along the lead in response to a frequency of electromagnetic energy is below a selected threshold.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 23, 2013
    Assignee: Medtronic, Inc.
    Inventors: Christopher C. Stancer, Piotr J. Przybyszewski, Sandy K. Wixon, Joel Peltier, Sung-Min Park, David E. Manahan, Jonathan Edmonson, Ben W. Herberg
  • Publication number: 20110196447
    Abstract: This disclosure describes techniques for configuring an IMD into the exposure operating mode. Prior to a medical procedure that generates a disruptive energy field, such as an MRI scan, an electronic prescription is configured to indicate that the IMD is authorized for the medical procedure that includes a disruptive energy field. The electronic prescription includes one or more designated bits within a storage element of the IMD. When the patient in which the IMD is implanted arrives for the medical procedure, a user (such as an MRI operator) interacts with a telemetry device to determine whether the electronic prescription is configured. Upon determining that the electronic prescription is configured, the IMD transitions into the exposure operating mode designed for operation in the disruptive energy field. In this manner, the electronic prescription confirms to the user that that the IMD has been checked for suitability for operation during the medical procedure.
    Type: Application
    Filed: August 31, 2010
    Publication date: August 11, 2011
    Inventors: Lawrence C. McClure, Sandy K. Wixon, Sean S. Josephson, Michael L. Ellingson, Hyun J. Yoon
  • Publication number: 20110196450
    Abstract: This disclosure describes techniques for configuring an IMD into the exposure operating mode. Prior to a medical procedure that generates a disruptive energy field, such as an MRI scan, an electronic prescription is configured to indicate that the IMD is authorized for the medical procedure that includes a disruptive energy field. The electronic prescription includes one or more designated bits within a storage element of the IMD. When the patient in which the IMD is implanted arrives for the medical procedure, a user (such as an MRI operator) interacts with a telemetry device to determine whether the electronic prescription is configured. Upon determining that the electronic prescription is configured, the IMD transitions into the exposure operating mode designed for operation in the disruptive energy field. In this manner, the electronic prescription confirms to the user that that the IMD has been checked for suitability for operation during the medical procedure.
    Type: Application
    Filed: August 31, 2010
    Publication date: August 11, 2011
    Inventors: Lawrence C. McClure, Sandy K. Wixon, Sean S. Josephson, Michael L. Ellingson, Hyun J. Yoon
  • Publication number: 20110106218
    Abstract: Techniques are described for controlling effects caused when an implantable medical device (IMD) is subject to a disruptive energy field. The IMD may include an implantable lead that includes one or more electrodes. The IMD may further include a first component having a parasitic inductance. The IMD may further include a second component having a reactance. In some examples, the reactance of the second component may be selected based on the parasitic inductance of the first component such that an amount of energy reflected along the lead in response to energy produced by an electromagnetic energy source is below a selected threshold. In additional examples, the parasitic inductance of the first component and the reactance of the second component are configured such that an amount of energy reflected along the lead in response to a frequency of electromagnetic energy is below a selected threshold.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 5, 2011
    Applicant: Medtronic, Inc.
    Inventors: Christopher C. Stancer, Piotr J. Przybyszewski, Sandy K. Wixon, Joel Peltier, Sung-Min Park, David E. Manahan, Jonathan Edmonson, Ben W. Herberg
  • Publication number: 20110106217
    Abstract: Techniques are described for controlling effects caused when an implantable medical device (IMD) is subject to a disruptive energy field. The IMD may include an implantable lead that includes one or more electrodes. The IMD may further include a first component having a parasitic inductance. The IMD may further include a second component having a reactance. In some examples, the reactance of the second component may be selected based on the parasitic inductance of the first component such that an amount of energy reflected along the lead in response to energy produced by an electromagnetic energy source is below a selected threshold. In additional examples, the parasitic inductance of the first component and the reactance of the second component are configured such that an amount of energy reflected along the lead in response to a frequency of electromagnetic energy is below a selected threshold.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 5, 2011
    Applicant: Medtronic, Inc.
    Inventors: Christopher C. Stancer, Piotr J. Przybyszewski, Sandy K. Wixon, Joel Peltier, Sung-Min Park, David E. Manahan, Jonathan Edmonson, Ben W. Herberg