Patents by Inventor Sang H. Ahn

Sang H. Ahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8211626
    Abstract: We have determined that it is necessary to remove hydroxyl groups from the surface of a DARC over which a CAR photoresist is applied, to reduce poisoning of the photoresist during imaging. The poisoning is reduced by treating the surface of the DARC film with a hydrogen or helium-containing plasma which is capable of removing the hydroxyl groups.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: July 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Sang H. Ahn, Sudha Rathi, Heraldo L. Bothelho
  • Patent number: 8088563
    Abstract: We have traced the detachment of photoresist during development of patterned features in the range of about 90 nm and smaller to a combination of the reduced “foot print” of the pattern on the underlying substrate and to the contact angle between the underlying substrate surface and the developing reagent. By maintaining a contact angle of about 30 degrees or greater, the detachment of the photoresist from the underlying substrate can be avoided for photoresists including feature sizes in the range of about 90 nm. We have achieved an increased contact angle between the DARC surface and a water-based CAR photoresist developer while simultaneously reducing CAR poisoning by treating the surface of the DARC after film formation.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: January 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Sang H. Ahn, Sudha Rathi, Heraldo L. Bothelho
  • Patent number: 7718081
    Abstract: A method of etching a substrate is provided. The method of etching a substrate includes transferring a pattern into the substrate using a double patterned amorphous carbon layer on the substrate as a hardmask. Optionally, a non-carbon based layer is deposited on the amorphous carbon layer as a capping layer before the pattern is transferred into the substrate.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: May 18, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Wei Liu, Jim Zhongyi He, Sang H. Ahn, Meihua Shen, Hichem M'Saad, Wendy H. Yeh, Christopher D. Bencher
  • Patent number: 7611996
    Abstract: Embodiments in accordance with the present invention relate to multi-stage curing processes for chemical vapor deposited low K materials. In certain embodiments, a combination of electron beam irradiation and thermal exposure steps may be employed to control selective outgassing of porogens incorporated into the film, resulting in the formation of nanopores. In accordance with one specific embodiment, a low K layer resulting from reaction between a silicon-containing component and a non-silicon containing component featuring labile groups, may be cured by the initial application of thermal energy, followed by the application of radiation in the form of an electron beam.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: November 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Francimar Schmitt, Yi Zheng, Kang Sub Yim, Sang H. Ahn, Lester A. D'Cruz, Dustin W. Ho, Alexandros T. Demos, Li-Qun Xia, Derek R. Witty, Hichem M'Saad
  • Patent number: 7547643
    Abstract: Adhesion of a porous low K film to an underlying barrier layer is improved by forming an intermediate layer lower in carbon content, and richer in silicon oxide, than the overlying porous low K film. This adhesion layer can be formed utilizing one of a number of techniques, alone or in combination. In one approach, the adhesion layer can be formed by introduction of a rich oxidizing gas such as O2/CO2/etc. to oxidize Si precursors immediately prior to deposition of the low K material. In another approach, thermally labile chemicals such as alpha-terpinene, cymene, and any other non-oxygen containing organics are removed prior to low K film deposition. In yet another approach, the hardware or processing parameters, such as the manner of introduction of the non-silicon containing component, may be modified to enable formation of an oxide interface prior to low K film deposition.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Francimar Schmitt, Alexandros T. Demos, Derek R. Witty, Hichem M'Sadd, Sang H. Ahn, Lester A. D'Cruz, Khaled A. Elsheref, Zhenjiang Cui
  • Patent number: 7297376
    Abstract: A method for depositing a low dielectric constant film is provided by positioning a substrate within a processing chamber having a powered electrode, and flowing into the processing chamber an initiation gas mixture of a flow rate of one or more organosilicon compounds and a flow rate of one or more oxidizing gases to deposit an initiation layer by applying an RF power to the electrode. The organosilicon compound flow rate is then ramped-up to a final flow rate to deposit a first transition layer, upon which one or more porogen compounds is introduced and the flow rate porogen compound is ramped up to a final deposition rate while depositing a second transition layer. A porogen doped silicon oxide layer is then deposited by flowing the final porogen and organosilicon flow rates until the RF power is turned off.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: November 20, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Kelvin Chan, Nagarajan Rajagopalan, Josephine Ju-Hwei Chang Liu, Sang H. Ahn, Yi Zheng, Sang In Yi, Vu Ngoc Tran Nguyen, Alexandros T. Demos
  • Patent number: 7105460
    Abstract: Methods are provided for depositing a dielectric material. The dielectric material may be used for an anti-reflective coating or as a hardmask. In one aspect, a method is provided for processing a substrate including introducing a processing gas comprising a silane-based compound and an organosilicon compound to the processing chamber and reacting the processing gas to deposit a nitrogen-free dielectric material on the substrate. The dielectric material comprises silicon and oxygen.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: September 12, 2006
    Assignee: Applied Materials
    Inventors: Bok Hoen Kim, Sudha Rathi, Sang H. Ahn, Christopher D. Bencher, Yuxiang May Wang, Hichem M'Saad, Mario D. Silvetti
  • Patent number: 7064078
    Abstract: A method of etching a substrate is provided. The method of etching a substrate includes transferring a pattern into the substrate using a double patterned amorphous carbon layer on the substrate as a hardmask. Optionally, a non-carbon based layer is deposited on the amorphous carbon layer as a capping layer before the pattern is transferred into the substrate.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: June 20, 2006
    Assignee: Applied Materials
    Inventors: Wei Liu, Jim Zhongyi He, Sang H. Ahn, Meihua Shen, Hichem M'Saad, Wendy H. Yeh, Chistopher D. Bencher
  • Patent number: 6927178
    Abstract: Methods are provided for depositing a dielectric material. The dielectric material may be used for an anti-reflective coating or as a hardmask. In one aspect, a method is provided for processing a substrate including introducing a processing gas comprising a silane-based compound and an oxygen and carbon containing compound to the processing chamber and reacting the processing gas to deposit a nitrogen-free dielectric material on the substrate. The dielectric material comprises silicon and oxygen. In another aspect, the dielectric material forms one or both layers in a dual layer anti-reflective coating.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: August 9, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Bok Hoen Kim, Sudha Rathi, Sang H. Ahn, Christopher D. Bencher, Yuxiang May Wang, Hichem M'Saad, Mario D. Silvetti, Miguel Fung, Keebum Jung, Lei Zhu
  • Publication number: 20040214446
    Abstract: Methods are provided for depositing a dielectric material. The dielectric material may be used for an anti-reflective coating or as a hardmask. In one aspect, a method is provided for processing a substrate including introducing a processing gas comprising a silane-based compound and an oxygen and carbon containing compound to the processing chamber and reacting the processing gas to deposit a nitrogen-free dielectric material on the substrate. The dielectric material comprises silicon and oxygen. In another aspect, the dielectric material forms one or both layers in a dual layer anti-reflective coating.
    Type: Application
    Filed: December 10, 2003
    Publication date: October 28, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Bok Hoen Kim, Sudha Rathi, Sang H. Ahn, Christopher D. Bencher, Yuxiang May Wang, Hichem M'Saad, Mario D. Silvetti, Miguel Fung, Keebum Jung, Lei Zhu
  • Publication number: 20040009676
    Abstract: Methods are provided for depositing a dielectric material. The dielectric material may be used for an anti-reflective coating or as a hardmask. In one aspect, a method is provided for processing a substrate including introducing a processing gas comprising a silane-based compound and an organosilicon compound to the processing chamber and reacting the processing gas to deposit a nitrogen-free dielectric material on the substrate. The dielectric material comprises silicon and oxygen.
    Type: Application
    Filed: July 11, 2002
    Publication date: January 15, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Bok Hoen Kim, Sudha Rathi, Sang H. Ahn, Christopher D. Bencher, Yuxiang May Wang, Hichem M'Saad, Mario D. Silvetti
  • Patent number: 6559074
    Abstract: A silicon nitride layer is formed over transistor gates while the processing temperature is relatively high, typically at least 500° C., and the pressure is relatively high, typically at least 50 Torr, to obtain a relatively high rate of formation of the silicon nitride layer. Processing conditions are controlled so as to more uniformly form the silicon nitride layer. Generally, the ratio of the NH3 gas to the silicon-containing gas by volume is selected sufficiently high so that, should the surface have a low region between transistor gates which is less than 0.15 microns wide and have a height-to-width ratio of at least 1.0, as well as an entirely flat area of at least 5 microns by 5 microns, the layer forms at a rate of not more than 25% faster on the flat area than on a base of the low region.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: May 6, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Steven A. Chen, Xianzhi Tao, Shulin Wang, Lee Luo, Kegang Huang, Sang H. Ahn