Patents by Inventor Sang H. Choi

Sang H. Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11004666
    Abstract: Systems, methods, and devices of the various embodiments may provide a portable power system for powering small devices that may be small, may be compact, may provide continuous power, and may be lightweight enough for an astronaut to carry. Various embodiments may provide a compact, thermionic-based cell that provides increased energy density and that more efficiently uses a heat source, such as a Pu-238 heat source. Nanometer scale emitters, spaced tightly together, in various embodiments convert a larger amount of heat into usable electricity than in current thermoelectric technology. The emitters of the various embodiments may be formed from various materials, such as copper (Cu), silicon (Si), silicon-germanium (SiGe), and lanthanides. Various embodiments may be added to regenerative thermionic cells with multiple layers to enhance the energy conversion efficiency of the regenerative thermionic cells.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: May 11, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Sang H. Choi, Adam J. Duzik
  • Patent number: 10985676
    Abstract: Various aspects include electric generators configured to boost electrical output by leveraging electron avalanche generated by a high energy photon radiation source. In various aspects, an electric generator includes a stator and a rotor positioned within the stator, wherein the stator and rotor are configured to generate electric current when the rotor is rotated, and a high energy photon source (e.g., a gamma ray source) positioned and configured to irradiate at least a portion of conductors in the rotor or stator. In some aspects, the stator generates a magnetic field when the electric generator is operating, and the rotor includes armature windings configured to generate electric current when the rotor is rotated. In some aspects, the high energy photon source includes cobalt-60 and/or cesium-137.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: April 20, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Sang H. Choi, Dennis M. Bushnell, Adam J. Duzik
  • Patent number: 10947639
    Abstract: Various embodiments provide Molten Target Sputtering (MTS) methods and devices. The various embodiments may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules for better crystal formation at low temperature operation. The various embodiment MTS methods and devices may enable the growth of a single crystal Si1-xGex film on a substrate heated to less than about 500° C. The various embodiment MTS methods and devices may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules without requiring the addition of extra systems.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: March 16, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Hyun Jung Kim, Sang H. Choi
  • Patent number: 10886452
    Abstract: Systems, methods, and devices of the various embodiments provide for microfabrication of devices, such as semiconductors, thermoelectric devices, etc. Various embodiments may include a method for fabricating a device, such as a semiconductor (e.g., a silicon (Si)-based complementary metal-oxide-semiconductor (CMOS), etc.), thermoelectric device, etc., using a mask. In some embodiments, the mask may be configured to allow molecules in a deposition plume to pass through one or more holes in the mask. In some embodiments, molecules in a deposition plume may pass around the mask. Various embodiments may provide thermoelectric devices having metallic junctions. Various embodiments may provide thermoelectric devices having metallic junctions rather than junctions formed from semiconductors.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: January 5, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Sang H. Choi, Adam J. Duzik
  • Patent number: 10651034
    Abstract: A method of forming an epitaxial layer on a substrate such as a sapphire wafer that does not readily absorb thermal radiation. The method includes coating a first side surface of the substrate with an energy-absorbing opaque material. The opaque material forms a thermally absorptive coating on the substrate. The coated substrate may be heated to remove contaminants from the thermally absorptive coating. The coated substrate is positioned in a vacuum deposition chamber and heated by directing radiative energy onto the thermally absorptive coating. An epitaxial layer such as GaN or SiGe is formed on a second side surface of the substrate opposite the thermally absorptive coating.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: May 12, 2020
    Inventors: Sang H. Choi, Adam J. Duzik
  • Publication number: 20190392961
    Abstract: The present disclosure is directed to a nuclear thermionic avalanche cell (NTAC) systems and related methods of generating energy comprising a radioisotope core, a plurality of thin-layered radioisotope sources configured to emit high energy beta particles and high energy photons, and a plurality of NTAC layers integrated with the radioisotope core and the radioisotope sources, wherein the plurality of NTAC layers are configured to receive the beta particles and the photons from the radioisotope core and sources, and by the received beta particles and photons, free up electrons in an avalanche process from deep and intra bands of an atom to output a high density avalanche cell thermal energy through a photo-ionic or thermionic process of the freed up electrons.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 26, 2019
    Inventors: Sang H. Choi, DENNIS M. BUSHNELL, DAVID R. KOMAR, ROBERT HENDRICKS
  • Publication number: 20190287773
    Abstract: Systems, methods, and devices of the various embodiments may provide a portable power system for powering small devices that may be small, may be compact, may provide continuous power, and may be lightweight enough for an astronaut to carry. Various embodiments may provide a compact, thermionic-based cell that provides increased energy density and that more efficiently uses a heat source, such as a Pu-238 heat source. Nanometer scale emitters, spaced tightly together, in various embodiments convert a larger amount of heat into usable electricity than in current thermoelectric technology. The emitters of the various embodiments may be formed from various materials, such as copper (Cu), silicon (Si), silicon-germanium (SiGe), and lanthanides. Various embodiments may be added to regenerative thermionic cells with multiple layers to enhance the energy conversion efficiency of the regenerative thermionic cells.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 19, 2019
    Inventors: Sang H. Choi, Adam J. Duzik
  • Publication number: 20190288614
    Abstract: Various aspects include electric generators configured to boost electrical output by leveraging electron avalanche generated by a high energy photon radiation source. In various aspects, an electric generator includes a stator and a rotor positioned within the stator, wherein the stator and rotor are configured to generate electric current when the rotor is rotated, and a high energy photon source (e.g., a gamma ray source) positioned and configured to irradiate at least a portion of conductors in the rotor or stator. In some aspects, the stator generates a magnetic field when the electric generator is operating, and the rotor includes armature windings configured to generate electric current when the rotor is rotated. In some aspects, the high energy photon source includes cobalt-60 and/or cesium-137.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 19, 2019
    Inventors: Sang H. Choi, Dennis M. Bushnell, Adam J. Duzik
  • Publication number: 20190287687
    Abstract: Systems, methods, and devices of the various embodiments enable a Nuclear Thermionic Avalanche Cell (NTAC) to capture gamma ray photons emitted during a fission process, such as a fission process of Uranium-235 (U-235), and to breed and use a new gamma ray source to increase an overall emission flux of gamma ray photons. Various embodiments combine a fission process with the production of Co-60, thereby boosting the output flux of gamma ray photons for use by a NTAC in generating power. Various embodiments combine a fission process with the production of Co-60, a NTAC generating avalanche cell power, and a thermoelectric generator generating thermoelectric power.
    Type: Application
    Filed: March 13, 2019
    Publication date: September 19, 2019
    Inventors: Sang H. Choi, Ronald J. Litchford
  • Publication number: 20190229251
    Abstract: Systems, methods, and devices of the various embodiments provide for microfabrication of devices, such as semiconductors, thermoelectric devices, etc. Various embodiments may include a method for fabricating a device, such as a semiconductor (e.g., a silicon (Si)-based complementary metal-oxide-semiconductor (CMOS), etc.), thermoelectric device, etc., using a mask. In some embodiments, the mask may be configured to allow molecules in a deposition plume to pass through one or more holes in the mask. In some embodiments, molecules in a deposition plume may pass around the mask. Various embodiments may provide thermoelectric devices having metallic junctions. Various embodiments may provide thermoelectric devices having metallic junctions rather than junctions formed from semiconductors.
    Type: Application
    Filed: December 21, 2018
    Publication date: July 25, 2019
    Inventors: Sang H. Choi, Adam J. Duzik
  • Publication number: 20180350481
    Abstract: A thermionic (TI) power cell includes a heat source, such as a layer of radioactive material that generates heat due to radioactive decay, a layer of electron emitting material disposed on the layer of radioactive material, and a layer of electron collecting material. The layer of electron emitting material is physically separated from the layer of electron collecting material to define a chamber between the layer of electron collecting material and the layer of electron emitting material. The chamber is substantially evacuated to permit electrons to traverse the chamber from the layer of electron emitting material to the layer of electron collecting material. Heat generated over time by the layer of radioactive material causes a substantially constant flow of electrons to be emitted by the layer of electron emitting material to induce an electric current to flow through the layer of electron collecting material when connected to an electrical load.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 6, 2018
    Inventors: Sang H. Choi, Adam J. Duzik
  • Publication number: 20180030616
    Abstract: Systems, methods, and devices of the various embodiments may provide a mechanism to enable the growth of a rhombohedral epitaxy at a lower substrate temperature by energizing the atoms in flux, thereby reducing the substrate temperature to a moderate level. In various embodiments, sufficiently energized atoms provide the essential energy needed for the rhombohedral epitaxy process which deforms the original cubic crystalline structure approximately into a rhombohedron by physically aligning the crystal structure of both materials at a lower substrate temperature.
    Type: Application
    Filed: July 27, 2017
    Publication date: February 1, 2018
    Inventors: Sang H. Choi, Adam J. Duzik
  • Publication number: 20170288113
    Abstract: A metal junction thermoelectric device includes at least one thermoelectric element. The thermoelectric element has first and second opposite sides, and a first conductor made from a first metal, and a second conductor made from a second metal. The first and second conductors are electrically interconnected in series, and the first and second conductors are arranged to conduct heat in parallel between the first and second sides. The first metal has a first occupancy state, and the second metal has a second occupancy state that is lower than the first occupancy state. A temperature difference between the first and second sides of the thermoelectric element causes a charge potential due to the difference in occupancy states of the first and second metals. The charge potential generates electrical power.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 5, 2017
    Inventors: Sang H. Choi, Hyun Jung Kim, Adam J. Duzik, Cheol Park
  • Publication number: 20170287710
    Abstract: A method of forming an epitaxial layer on a substrate such as a sapphire wafer that does not readily absorb thermal radiation. The method includes coating a first side surface of the substrate with an energy-absorbing opaque material. The opaque material forms a thermally absorptive coating on the substrate. The coated substrate may be heated to remove contaminants from the thermally absorptive coating. The coated substrate is positioned in a vacuum deposition chamber and heated by directing radiative energy onto the thermally absorptive coating. An epitaxial layer such as GaN or SiGe is formed on a second side surface of the substrate opposite the thermally absorptive coating.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 5, 2017
    Inventors: Sang H. Choi, Adam J. Duzik
  • Publication number: 20170268122
    Abstract: Various embodiments provide Molten Target Sputtering (MTS) methods and devices. The various embodiments may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules for better crystal formation at low temperature operation. The various embodiment MTS methods and devices may enable the growth of a single crystal Si1-xGex film on a substrate heated to less than about 500° C. The various embodiment MTS methods and devices may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules without requiring the addition of extra systems.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 21, 2017
    Inventors: Hyun Jung Kim, Sang H. Choi
  • Patent number: 9446953
    Abstract: Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 20, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jae-Woo Kim, Sang H. Choi, Sr., Peter T. Lillehei, Sang-Hyon Chu, Yeonjoon Park, Glen C. King, James R. Elliott
  • Patent number: 8529825
    Abstract: A new fabrication method for nanovoids-imbedded bismuth telluride (Bi—Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi—Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: September 10, 2013
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Sang-Hyon Chu, Sang H. Choi, Jae-Woo Kim, Yeonjoon Park, James R. Elliott, Glen C. King, Diane M. Stoakley
  • Patent number: 8294989
    Abstract: An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: October 23, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang H. Choi, Glen C. King, James R. Elliott
  • Patent number: 8226767
    Abstract: “Super-hetero-epitaxial” combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a “Tri-Unity” system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: July 24, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Yeonjoon Park, Sang H. Choi, Glen C. King, James R. Elliott
  • Patent number: 8217143
    Abstract: Metal nanoshells are fabricated by admixing an aqueous solution of metal ions with an aqueous solution of apoferritin protein molecules, followed by admixing an aqueous solution containing an excess of an oxidizing agent for the metal ions. The apoferritin molecules serve as bio-templates for the formation of metal nanoshells, which form on and are bonded to the inside walls of the hollow cores of the individual apoferritin molecules. Control of the number of metal atoms which enter the hollow core of each individual apoferritin molecule provides a hollow metal nonparticle, or nanoshell, instead of a solid spherical metal nanoparticle.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: July 10, 2012
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Jae-Woo Kim, Sang H. Choi, Peter T. Lillehei, Sang-Hyon Chu, Yeonjoon Park, Glen C. King, James R. Elliott, Jr.