Patents by Inventor Sang Hyune Baek

Sang Hyune Baek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7031046
    Abstract: A micromirror array lens consists of many micromirrors with two degrees of freedom rotation and actuating components. As a reflective variable focal length lens, the array of micromirrors makes all lights scattered from one point of an object converge at one point of image plane. As operational methods for the lens, the actuating components control the positions of micromirrors electrostatically and/or electromagnetically. The optical efficiency of the micromirror array lens is increased by locating a mechanical structure upholding micromirrors and the actuating components under micromirrors. The known semiconductor microelectronics technologies can remove the loss in effective reflective area due to electrode pads and wires. Independent control of each micromirror is possible by known semiconductor microelectronics technologies. The micromirror array can form a lens with arbitrary shape and/or size, as desired.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 18, 2006
    Assignees: Angstrom Inc., Stereo Display Inc.
    Inventors: Tae Hyeon Kim, Sang Hyune Baek
  • Patent number: 6999226
    Abstract: A variable focal length lens comprising micromirrors with pure translation is invented. The lens consists of many micromirrors and actuating components. The array of micromirrors with pure translation makes all lights scattered from one point of an object have the same periodic phase and converge at one point of image plane by using Fresnel diffraction theory. The actuating components control the positions of micromirrors electrostatically and/or electromagnetically. The optical efficiency of the micromirror array lens is increased by locating a mechanical structure upholding micromirrors and the actuating components under micromirrors. The known semiconductor microelectronics technologies can remove the loss in effective reflective area due to electrode pads and wires. The lens can correct aberration by controlling each micromirror independently. Independent control of each micromirror is possible by known semiconductor microelectronics technologies.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: February 14, 2006
    Assignees: Angstrom Inc., Stereo Display Inc.
    Inventors: Tae Hyeon Kim, Sang Hyune Baek
  • Patent number: 6970284
    Abstract: A variable focal length lens comprising micromirrors with one degree of freedom rotation is invented. The lens consists of many micromirrors and actuating components. The array of micromirrors with one degree of freedom rotation makes all lights scattered from one point of an object converge at one point of image plane by using rotation of micromirror. The micromirror has the same function as a mirror. Therefore, the reflective surface of the micromirror is made of metal, metal compound, multi-layered dielectric material, or other materials with high reflectivity. The actuating components control the rotational displacements of micromirrors electrostatically and/or electromagnetically. The optical efficiency of the micromirror array lens is increased by locating a mechanical structure upholding micromirrors and the actuating components under micromirrors. The known CMOS technologies can remove the loss in effective reflective area due to electrode pads and wires.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: November 29, 2005
    Assignees: Angstrom Inc., Stereo Display Inc.
    Inventors: Tae Hyeon Kim, Sang Hyune Baek
  • Patent number: 6934072
    Abstract: A micromirror array lens consists of many micromirrors with two degrees of freedom rotation and one degree of freedom translation and actuating components. As a reflective variable focal length lens, the array of micromirrors makes all lights scattered from one point of an object have the same periodic phase and converge at one point of image plane. As operating methods for the lens, the actuating components control the positions of micromirrors electrostatically and/or electromagnetically. The optical efficiency of the micromirror array lens is increased by locating a mechanical structure upholding micromirrors and the actuating components under micromirrors. Semiconductor microelectronics technologies can remove the loss in effective reflective area due to electrode pads and wires. The lens can correct aberration by controlling each micromirror independently. Independent control of each micromirror is possible by known semiconductor microelectronics technologies.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: August 23, 2005
    Assignees: Angstrom Inc., Stereo Display Inc.
    Inventors: Tae Hyeon Kim, Sang Hyune Baek
  • Patent number: 6934073
    Abstract: A micromirror array lens consists of many micromirrors with one degree of freedom rotation and one degree of freedom translation and actuating components. As a reflective variable focal length lens, the array of micromirrors makes all lights scattered from one point of an object have the same periodic phase and converge at one point of image plane. As operational methods for the lens, the actuating components control the positions of micromirrors electrostatically and/or electromagnetically. The optical efficiency of the micromirror array lens is increased by locating a mechanical structure upholding micromirrors and the actuating components under micromirrors. The known semiconductor microelectronics technologies can remove the loss in effective reflective area due to electrode pads and wires. The lens can correct aberration by controlling each micromirror independently. Independent control of each micromirror is possible by known semiconductor microelectronics technologies.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: August 23, 2005
    Assignees: Angstrom Inc., Stereo Display Inc.
    Inventors: Tae Hyeon Kim, Sang Hyune Baek