Patents by Inventor Sang Kuk Woo

Sang Kuk Woo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9806360
    Abstract: The present invention relates to a unit cell for a solid-oxide fuel cell and to a solid-oxide fuel cell using same, and, more specifically, relates to: a unit cell for a solid-oxide fuel cell, wherein a fuel charging-and-discharging part and an air charging-and-discharging part are provided perpendicularly to a cathode comprised in the solid-oxide fuel cell; and a solid-oxide fuel cell using same.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: October 31, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ji-Haeng Yu, In-Sub Han, Doo-Won Seo, Se-Young Kim, Sang-Kuk Woo, Sun-Dong Kim
  • Patent number: 9741497
    Abstract: Disclosed is an insulating bonding part for bonding to a solid electrolyte including beta-alumina, the insulating bonding part comprising a plurality of layers which have different mixing ratios of the alpha-alumina and CaO, wherein the layer closer to the solid electrolyte including the beta-alumina has a higher ratio of the CaO, and wherein the layer farther from the solid electrolyte including the beta-alumina has a higher ratio of the alpha-alumina.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: August 22, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Se-Young Kim, Sang-Kuk Woo, Sun-Dong Kim, Jong-Hoon Joo, In-Sub Han, Doo-Won Seo, Ji-Haeng Yu
  • Patent number: 9666377
    Abstract: Disclosed is an internal current collection structure of a tubular thermal to electric converting cell including an internal electrode, a solid electrolyte and an external electrode. The internal current collection structure includes: a first current collector which closely contacts with the internal electrode of the tubular thermal to electric converting cell; a second current collector which fixes the first porous current collector to the inside of the tubular thermal to electric converting cell and causes the first current collector to be in close contact with the internal electrode; and a lead wire which is a conductive medium and is located between the first current collector and the second current collector.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: May 30, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong Kim, Sang-Kuk Woo, Se-Young Kim, Jong-Hoon Joo, In-Sub Han, Doo-Won Seo, Min-Soo Suh
  • Patent number: 9607774
    Abstract: Disclosed are an open internal electrode AMTEC unit cell, a method for manufacturing the same and a method for connecting circuits. In order to overcome the difficulty in collecting electricity within a conventional AMTEC unit cell, an internal electrode of which a portion is open to the outside, so that the internal electrode and an external electrode can be electrically connected to each other at the outside of the unit cell, and a metal support is used as the internal electrode, so that the internal electrode has durability and stability, and a solid electrolyte is formed in the form of a thin film, and as a result, the AMTEC unit cell has an improved efficiency and a simpler manufacturing process.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: March 28, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong Kim, Se-Young Kim, Sang-Kuk Woo, Jong-Hoon Joo, In-Sub Han, Doo-Won Seo, Min-Soo Suh
  • Publication number: 20170008766
    Abstract: Provided is a method of synthesizing boron nitride, comprising the steps of: preparing a boron compound and a nitrogen compound; mixing the boron compound and the nitrogen compound in a non-aqueous solvent; forming an ester compound by melting the mixture in the non-aqueous solvent; dehydrating the ester compound; and forming boron nitride by nitriding the ester compound in a reductive atmosphere.
    Type: Application
    Filed: July 7, 2016
    Publication date: January 12, 2017
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: In Sub HAN, Se Young KIM, Hyun Uk KIM, Young Hoon SEONG, Sang Kuk WOO, Hee Yeon KIM, Doo Won SEO, Min Soo SUH, Seong OK HAN
  • Patent number: 9324506
    Abstract: Disclosed is a modularized AMTEC cell which does not require a separate collector by using a metal support as an internal electrode, has durability and stability even at a high temperature and a high pressure, very easily joins the cell to a housing by inserting the cell into an insulating portion and sealing, minimizes the number of the parts and expands easily the system scale through the serial-parallel structure.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: April 26, 2016
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong Kim, Sang-Kuk Woo, Se-Young Kim, Jong-Hoon Joo, In-Sub Han, Doo-Won Seo, Min-Soo Suh
  • Patent number: 9312533
    Abstract: Disclosed is a material for an electrode having an excellent performance and an excellent durability by maintaining high electrical conductivity and by restraining the growth of the grain at a high temperature. The material can be manufactured by synthesizing composite materials through use of a metallic material of Mo and a ceramic material, and then the composite materials can be used as the electrode.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: April 12, 2016
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong Kim, Sang-Kuk Woo, Se-Young Kim, Jong-Hoon Joo, In-Sub Han, Doo-Won Seo, Min-Soo Suh
  • Patent number: 9269971
    Abstract: Disclosed herein is a flat-tubular solid oxide cell stack in which the pathway of chemical reactions is long and the temperature and flow rate of feed gas are maintained at uniform levels, thus the efficiency of electrical energy generation is increased when the cell stack is used as a fuel cell, and the purity of generated gas (hydrogen) is increased when the cell stack is used as a high-temperature electrolyzer.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: February 23, 2016
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Doo-Won Seo, Sun-Dong Kim, In-Sub Han, Ji-Haeng Yu, Se-Young Kim, Sang-Kuk Woo
  • Publication number: 20160043410
    Abstract: Disclosed is a tube-type solid-oxide secondary battery.
    Type: Application
    Filed: August 5, 2015
    Publication date: February 11, 2016
    Inventors: SUN-DONG KIM, DOO-WON SEO, IN-SUB HAN, SE-YOUNG KIM, SANG-KUK WOO
  • Patent number: 9156741
    Abstract: The present invention provides a method of preparing a carbon fiber-reinforced silicon carbide composite material, wherein carbon nanotubes are formed in the composite material, and then metal silicon is melted and infiltrated into the composite material, so the amount of unreacted metal is reduced and the strength of the composite material is improved, and provides a carbon fiber-reinforced silicon carbide composite material prepared by the method.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: October 13, 2015
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Se-Young Kim, Nam-Jo Jeong, In-Sub Han, Sang-Kuk Woo, Doo-Won Seo, Kang Bai, Ji-Haeng Yu, Sun-Dong Kim
  • Patent number: 9123917
    Abstract: The present invention relates to a solid oxide fuel cell, which includes a plurality of unit cells and a connection layer between the plurality of unit cells, wherein each of the unit cells includes an anode, a cathode and a solid electrolyte between the anode and the cathode, and the connection layer includes i) a first layer containing La-ferrite including one or more selected from the group consisting of Sr, Ca and Ba; and ii) a second layer containing La-ferrite including one or more selected from the group consisting of Sr, Ca and Ba, and one or more cerias selected from the group consisting of GDC (Gd doped ceria), LDC (La-doped ceria) and SDC (Sm-doped ceria), wherein the first layer is in contact with the cathode of each of the unit cells and the second layer is in contact with the anode of each of the unit cells.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 1, 2015
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ji-Haeng Yu, Hee-Lak Lee, In-Sub Han, Doo-Won Seo, Kee-Seog Hong, Se-Young Kim, Sang-Kuk Woo, Sun-Dong Kim
  • Patent number: 9028916
    Abstract: A method for synthesizing carbon nanowires directly on the internal surface of a three-dimensional structure including a carbon structure and, more particularly, to a method for synthesizing carbon nanowires on the surface of pores or gaps present in a structure. According to the present invention, it is possible to fill fine pores or gaps in a structure, which cause a reduction in mechanical properties or conductivity, with high-density carbon nanowires, thus significantly improving mechanical or electrical performance of a final product.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: May 12, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Nam Jo Jeong, Se Young Kim, In Sub Han, Sang Kuk Woo, Doo Won Seo
  • Patent number: 9028914
    Abstract: Disclosed herein is a method of manufacturing a high-density fiber reinforced ceramic composite material, including the steps of: 1) impregnating a fiber preform material multi-coated with pyrolytic carbon and silicon carbide to form impregnated fiber reinforced plastic composite material; 2)carbonizing the impregnated fiber reinforced plastic composite material to form carbonized fiber composite material; 3) a primary reaction-sintering of the fiber composite material; 4) cooling the primarily reaction-sintered fiber composite material down to room temperature and then impregnating the primarily reaction-sintered fiber composite material with a solution in which a polymer precursor for producing silicon carbide (SiC) is dissolved in a hexane (n-hexane) solvent; and 5) a secondary reaction-sintering of the fiber composite material; and a high-density fiber reinforced ceramic composite material manufactured using the method.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 12, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: In-Sub Han, Se-Young Kim, Sang-Kuk Woo, Doo-Won Seo, Kang Bai, Ji-Haeng Yu, Sun-Dong Kim
  • Patent number: 8999594
    Abstract: This invention relates to a unit cell for a flat-tubular solid oxide fuel cell or solid oxide electrolyzer, and a flat-tubular solid oxide fuel cell and a flat-tubular solid oxide electrolyzer using the same, and more particularly to a unit cell for a flat-tubular solid oxide fuel cell or solid oxide electrolyzer, wherein the unit cell includes a connector including connection parts, thus decreasing the thickness of the unit cell and reducing the size of a cell stack, and to a flat-tubular solid oxide fuel cell and a flat-tubular solid oxide electrolyzer using the same.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: April 7, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Sun-Dong Kim, Doo-Won Seo, In-Sub Han, Ji-Haeng Yu, Se-Young Kim, Sang-Kuk Woo
  • Publication number: 20150024299
    Abstract: The present invention relates to a unit cell for a solid-oxide fuel cell and to a solid-oxide fuel cell using same, and, more specifically, relates to: a unit cell for a solid-oxide fuel cell, wherein a fuel charging-and-discharging part and an air charging-and-discharging part are provided perpendicularly to a cathode comprised in the solid-oxide fuel cell; and a solid-oxide fuel cell using same.
    Type: Application
    Filed: February 12, 2013
    Publication date: January 22, 2015
    Inventors: Ji-Haeng Yu, In-Sub Han, Doo-Won Seo, Se-Young Kim, Sang-Kuk Woo, Sun-Dong Kim
  • Patent number: 8932779
    Abstract: A device for a solid oxide fuel cell or a solid oxide electrolysis cell includes an integral one-piece construction of a current collector and a manifold. The device eliminates the need for a brazing or thermal bonding process for joining the manifold with the current collector, and thus makes it possible to prevent breakdown of the junction formed between the manifold and the current collector, which can lead to gas leakage through the junction, and thus can be used for a long period of time.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: January 13, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Sun-Dong Kim, Doo-Won Seo, In-Sub Han, Ji-Haeng Yu, Se-Young Kim, Sang-Kuk Woo
  • Publication number: 20150010787
    Abstract: Disclosed is an internal current collection structure of a tubular thermal to electric converting cell including an internal electrode, a solid electrolyte and an external electrode. The internal current collection structure includes: a first current collector which closely contacts with the internal electrode of the tubular thermal to electric converting cell; a second current collector which fixes the first porous current collector to the inside of the tubular thermal to electric converting cell and causes the first current collector to be in close contact with the internal electrode; and a lead wire which is a conductive medium and is located between the first current collector and the second current collector.
    Type: Application
    Filed: August 8, 2013
    Publication date: January 8, 2015
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong KIM, Sang-Kuk Woo, Se-Young Kim, Jong-Hoon Joo, In-Sub Han, Doo-Won Seo, Min-Soo Suh
  • Patent number: 8927172
    Abstract: Disclosed herein is a flat-tubular solid oxide cell stack. The cell stack includes a plurality of unit cells which are stacked one on top of another. Each unit cell includes a flat-tubular electrode support made of a porous conductive material. A first-gas flow channel is formed in the electrode support in a longitudinal direction thereof. First gas flows along the first-gas flow channel. A second-gas flow channel is formed on the outer surface of the electrode support. Second-gas flows along the second-gas flow channel. A connection hole is formed on each of opposite ends of the first-gas flow channel of each of the unit cells and communicates with the first-gas flow channel of the adjacent unit cell so that the first gas flows along the unit cells in a zigzag manner in the longitudinal directions of the unit cells.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 6, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Sun-Dong Kim, Ji-Haeng Yu, In-Sub Han, Doo-Won Seo, Kee-Seog Hong, Se-Young Kim, Sang-Kuk Woo
  • Publication number: 20140332046
    Abstract: Disclosed is a thermal to electric power generator comprising: a plurality of thermal to electric power generation cells; a case in which the plurality of the thermal to electric power generation cells are placed; a condensing unit which is disposed on an upper portion of the case and collects and condenses a working fluid which has passed through the plurality of the thermal to electric power generation cells; an evaporator which is disposed on a lower portion of the case, converts the working fluid into vapor by transferring heat to the working fluid; a heat exchanger which is placed on a surface other than an upper surface of the outside of the case contacting with the condensing unit; a circulator which connects the condensing unit and the evaporator; and a joiner which joins the evaporator to the plurality of the thermal to electric power generation cells.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 13, 2014
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong KIM, Sang-Kuk Woo, Se-Young Kim, Jong-Hoon Joo, In-Sub Han, Doo-Won Seo, Min-Soo Suh
  • Publication number: 20140332047
    Abstract: Disclosed is a method for collecting current by using a liquefied or gaseous working fluid present inside an electric power generator system. Through the method, a porous structure like a metal felt capable of infusing the liquefied working fluid is inserted and connected to the cell, and then the working fluid present around the cell is naturally infused, so that current is collected. For this purpose, a current collector is provided, which is located between adjacent thermal to electric power generation cells among a plurality of the thermal to electric power generation cells.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 13, 2014
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sun-Dong KIM, Jong-Hoon Joo, Sang-Kuk Woo, Se-Young Kim, In-Sub Han, Doo-Won Seo, Min-Soo Suh