Patents by Inventor Sang-Ryol Yang

Sang-Ryol Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180114706
    Abstract: A wafer boat assembly including a boat, a pedestal, and a base. The boat includes a slot to hold a wafer and a rod including a gas line. The pedestal includes a first surface and a connection line coupled to the gas line. The base is on a second surface of the pedestal, rotates the pedestal, and supplies gas to the connection line. The boat is on the first surface of the pedestal. The gas flows along the gas line and is dispensed from a location where the rod contacts the wafer to levitate the wafer.
    Type: Application
    Filed: April 24, 2017
    Publication date: April 26, 2018
    Inventors: Sang Ryol YANG, Kyo Jun JEON, Kun Tack LEE, Jong Heun LIM
  • Publication number: 20150191818
    Abstract: A vertical furnace is provided. The vertical furnace includes a chamber having a process space configured to receive substrates, a first exhaust passageway in fluidic communication with the process space, and a second exhaust passageway in fluidic communication with the process space and isolated from the first exhaust passageway; an injecting unit configured to inject a reaction gas into the process space; and an exhausting unit in fluidic communication with the first exhaust passageway and the second exhaust passageway and configured to provide the first exhaust passageway and the second exhaust passageway with an exhausting pressure.
    Type: Application
    Filed: December 5, 2014
    Publication date: July 9, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-Ryol YANG, Young-Sub YOU, Jin-Hwa HEO
  • Patent number: 8970039
    Abstract: A semiconductor device includes a plurality of electrode structures perpendicularly extending on a substrate, and at least one support unit extending between the plurality of electrode structures. The support unit includes at least one support layer including a noncrystalline metal oxide contacting a part of the plurality of electrode structures. Related devices and fabrication methods are also discussed.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-jin Kuh, Sang-ryol Yang, Soon-wook Jung, Young-sub You, Byung-hong Chung, Han-mei Choi, Jong-sung Lim
  • Patent number: 8815676
    Abstract: Methods of forming vertical nonvolatile memory devices may include forming an electrically insulating layer, which includes a composite of a sacrificial layer sandwiched between first and second mold layers. An opening extends through the electrically insulating layer and exposes inner sidewalls of the first and second mold layers and the sacrificial layer. A sidewall of the opening may be lined with an electrically insulating protective layer and a first semiconductor layer may be formed on an inner sidewall of the electrically insulating protective layer within the opening. At least a portion of the sacrificial layer may then be selectively etched from between the first and second mold layers to thereby define a lateral recess therein, which exposes an outer sidewall of the electrically insulating protective layer.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: August 26, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Ryol Yang, Yoo-Chul Kong, Jung-Ho Kim, Jin-Gyun Kim, Jae-Jin Shin, Ji-Hoon Choi
  • Patent number: 8815697
    Abstract: Provided is a method of manufacturing a semiconductor device having a capacitor. The method includes forming a composite layer, including sequentially stacking on a substrate alternating layers of first through nth sacrificial layers and first through nth supporting layers. A plurality of openings that penetrate the composite layer are formed. A lower electrode is formed in the plurality of openings. At least portions of the first through nth sacrificial layers are removed to define a support structure for the lower electrode extending between adjacent ones of the plurality of openings and the lower electrode formed therein, the support structure including the first through nth supporting layers and a gap region between adjacent ones of the first through nth supporting layers where the first through nth sacrificial layers have been removed. A dielectric layer is formed on the lower electrode and an upper electrode is formed on the dielectric layer.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: August 26, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-Ho Yoon, Bong-Jin Kuh, Ki-Chul Kim, Gyung-Jin Min, Tae-Jin Park, Sang-Ryol Yang, Jung-Min Oh, Sang-Yoon Woo, Young-Sub Yoo, Ji-Eun Lee, Jong-Sung Lim, Yong-Moon Jang, Han-Mei Choi, Je-Woo Han
  • Patent number: 8445367
    Abstract: In a method of manufacturing a semiconductor device, a plurality of sacrificial layers and a plurality of insulating interlayers are repeatedly and alternately on a substrate. The insulating interlayers include a different material from a material of the sacrificial layers. At least one opening through the insulating interlayers and the sacrificial layers are formed. The at least one opening exposes the substrate. The seed layer is formed on an inner wall of the at least one opening using a first silicon source gas. A polysilicon channel is formed in the at least one opening by growing the seed layer. The sacrificial layers are removed to form a plurality of grooves between the insulating interlayers. A plurality of gate structures is formed in the grooves, respectively.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: May 21, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Tae Noh, Hun-Hyeong Lim, Ki-Hyun Hwang, Jin-Gyun Kim, Sang-Ryol Yang
  • Publication number: 20130065369
    Abstract: Methods of forming vertical nonvolatile memory devices may include forming an electrically insulating layer, which includes a composite of a sacrificial layer sandwiched between first and second mold layers. An opening extends through the electrically insulating layer and exposes inner sidewalls of the first and second mold layers and the sacrificial layer. A sidewall of the opening may be lined with an electrically insulating protective layer and a first semiconductor layer may be formed on an inner sidewall of the electrically insulating protective layer within the opening. At least a portion of the sacrificial layer may then be selectively etched from between the first and second mold layers to thereby define a lateral recess therein, which exposes an outer sidewall of the electrically insulating protective layer.
    Type: Application
    Filed: November 8, 2012
    Publication date: March 14, 2013
    Inventors: Sang-Ryol Yang, Yoo-Chul Kong, Jung-Ho Kim, Jin-Gyun Kim, Jae-Jin Shin, Ji-Hoon Choi
  • Publication number: 20130005110
    Abstract: Provided is a method of manufacturing a semiconductor device having a capacitor. The method includes forming a composite layer, including sequentially stacking on a substrate alternating layers of first through nth sacrificial layers and first through nth supporting layers. A plurality of openings that penetrate the composite layer are formed. A lower electrode is formed in the plurality of openings. At least portions of the first through nth sacrificial layers are removed to define a support structure for the lower electrode extending between adjacent ones of the plurality of openings and the lower electrode formed therein, the support structure including the first through nth supporting layers and a gap region between adjacent ones of the first through nth supporting layers where the first through nth sacrificial layers have been removed. A dielectric layer is formed on the lower electrode and an upper electrode is formed on the dielectric layer.
    Type: Application
    Filed: May 23, 2012
    Publication date: January 3, 2013
    Inventors: Jun-Ho Yoon, Bong-Jin Kuh, Ki-Chul Kim, Gyung-Jin Min, Tae-Jin Park, Sang-Ryol Yang, Jung-Min Oh, Sang-Yoon Woo, Young-Sub Yoo, Ji-Eun Lee, Jong-Sung Lim, Yong-Moon Jang, Han-Mei Choi, Je-Woo Han
  • Patent number: 8330207
    Abstract: A flash memory device including a lower tunnel insulation layer on a substrate, an upper tunnel insulation layer on the lower tunnel insulation layer, and a P-type gate on the upper tunnel insulation layer, wherein the upper tunnel insulation layer includes an amorphous oxide layer.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: December 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-kweon Baek, Sang-ryol Yang, Si-young Choi, Bon-young Koo, Ki-hyun Hwang, Jin-tae Noh
  • Patent number: 8309405
    Abstract: Methods of forming vertical nonvolatile memory devices may include forming an electrically insulating layer, which includes a composite of a sacrificial layer sandwiched between first and second mold layers. An opening extends through the electrically insulating layer and exposes inner sidewalls of the first and second mold layers and the sacrificial layer. A sidewall of the opening may be lined with an electrically insulating protective layer and a first semiconductor layer may be formed on an inner sidewall of the electrically insulating protective layer within the opening. At least a portion of the sacrificial layer may then be selectively etched from between the first and second mold layers to thereby define a lateral recess therein, which exposes an outer sidewall of the electrically insulating protective layer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: November 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Ryol Yang, Yoo-Chul Kong, Jin-Gyun Kim, Jae-Jin Shin, Jung-Ho Kim, Ji-Hoon Choi
  • Publication number: 20120156848
    Abstract: A method of manufacturing a non-volatile memory device includes alternately stacking interlayer sacrificial layers and interlayer insulating layers on a substrate, forming first openings exposing the substrate, forming sidewall insulating layers on sidewalls of the first openings, and forming channel regions on the sidewall insulating layers. The first openings penetrate the interlayer sacrificial layers and the interlayer insulating layers. The sidewall insulating layers have different thicknesses according to distances from the substrate.
    Type: Application
    Filed: September 22, 2011
    Publication date: June 21, 2012
    Inventors: Sang-ryol YANG, Ki-hyun HWANG, Seung-bae PARK, Jin-gyun KIM, Woong LEE, Jung-geun JEE, Ji-hoon CHOI
  • Publication number: 20120115293
    Abstract: In a method of manufacturing a semiconductor device, a plurality of sacrificial layers and a plurality of insulating interlayers are repeatedly and alternately on a substrate. The insulating interlayers include a different material from a material of the sacrificial layers. At least one opening through the insulating interlayers and the sacrificial layers are formed. The at least one opening exposes the substrate. The seed layer is formed on an inner wall of the at least one opening using a first silicon source gas. A polysilicon channel is formed in the at least one opening by growing the seed layer. The sacrificial layers are removed to form a plurality of grooves between the insulating interlayers. A plurality of gate structures is formed in the grooves, respectively.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 10, 2012
    Inventors: Jin-Tae NOH, Hun-Hyeong Lim, Ki-Hyun Hwang, Jin-Gyun Kim, Sang-Ryol Yang
  • Publication number: 20120083077
    Abstract: Methods of forming vertical nonvolatile memory devices may include forming an electrically insulating layer, which includes a composite of a sacrificial layer sandwiched between first and second mold layers. An opening extends through the electrically insulating layer and exposes inner sidewalls of the first and second mold layers and the sacrificial layer. A sidewall of the opening may be lined with an electrically insulating protective layer and a first semiconductor layer may be formed on an inner sidewall of the electrically insulating protective layer within the opening. At least a portion of the sacrificial layer may then be selectively etched from between the first and second mold layers to thereby define a lateral recess therein, which exposes an outer sidewall of the electrically insulating protective layer.
    Type: Application
    Filed: September 8, 2011
    Publication date: April 5, 2012
    Inventors: Sang-Ryol Yang, Yoo-Chul Kong, Jin-Gyun Kim, Jae-Jin Shin, Jung-Ho Kim, Ji-Hoon Choi
  • Patent number: 7951671
    Abstract: A method of fabricating a non-volatile memory device includes forming an isolation trench in a semiconductor substrate, and the isolation trench defines first and second fins. The method further includes forming an isolation layer partially filling the isolation trench, forming first and second charge trap patterns respectively covering parts of the first and second fins projecting from the isolation layer, and forming a control gate electrode covering the first and second charge trap patterns and crossing the first and second fins.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: May 31, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ju-Wan Lim, Hyun-Seok Jang, Byung-Hong Chung, Ki-Hyun Hwang, Sang-Ryol Yang
  • Publication number: 20110045667
    Abstract: A gate of a transistor includes a gate oxide layer formed on a semiconductor device, a first conductive layer pattern including polysilicon doped with boron and formed on the gate oxide layer, a diffusion preventing layer pattern including amorphous silicon formed by a chemical vapor deposition process using a reaction gas having trisilane (Si3H8) and formed on the first conductive layer pattern, and a second conductive layer pattern including metal silicide and formed on the diffusion preventing layer pattern. Since a gate of PMOS transistor includes a diffusion preventing layer having an excellent surface morphology, diffusion of impurities is sufficiently prevented. Thus, the threshold voltage of PMOS transistor may be reduced and threshold voltage distribution may be improved.
    Type: Application
    Filed: October 28, 2010
    Publication date: February 24, 2011
    Inventors: Jin-Gyun Kim, Ki-Hyun Hwang, Sang-Ryol Yang
  • Patent number: 7759192
    Abstract: A semiconductor device includes a capacitor having a bottom electrode, a dielectric layer formed on the bottom electrode, a top electrode formed on the dielectric layer, and a contact plug having a metal that is connected with the top electrode, wherein the top electrode includes a doped poly-Si1-xGex layer and a doped polysilicon layer epitaxially deposited on the doped poly-Si1-xGex layer and the contact plug makes a contact with the doped polysilicon layer.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: July 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Young Ahn, Jin-Tae Noh, Hee-Seok Kim, Jin-Gyun Kim, Ju-Wan Lim, Sang-Ryol Yang, Hong-Suk Kim, Sung-Hae Lee
  • Patent number: 7723755
    Abstract: Provided are a semiconductor device having a buried word line structure in which a gate electrode and a word line may be buried within a substrate to reduce the height of the semiconductor device and to reduce the degradation of the oxide layer caused by chlorine ions from the application of a TiN metal gate, and a method of fabricating the semiconductor device. The semiconductor device may comprise a semiconductor substrate defined by a device isolation layer and comprising an active region including a trench and one or more recess channels, a gate isolation layer on the surface of the trench, a gate electrode layer on the surface of the gate isolation layer, and a word line by which the trench may be buried on the surface of the gate electrode layer.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: May 25, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Si-hyung Lee, Sang-ryol Yang, Myoung-bum Lee, Ki-hyun Hwang
  • Publication number: 20090221140
    Abstract: A non-volatile memory device prevents charge spreading. The non-volatile memory device includes an isolation trench in a semiconductor substrate, an isolation layer partially filling the isolation trench between first and second fins defined by the isolation trench, a control gate electrode crossing the first and second fins, a first charge trap pattern between the first fin and the control gate electrode, and a second charge trap pattern between the second fin and the control gate electrode.
    Type: Application
    Filed: May 11, 2009
    Publication date: September 3, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ju-Wan Lim, Hyun-Seok Jang, Byung-Hong Chung, Ki-Hyun Hwang, Sang-Ryol Yang
  • Publication number: 20090179252
    Abstract: A flash memory device may include a lower tunnel insulation layer disposed on a substrate, an upper tunnel insulation layer disposed on the lower tunnel insulation layer, a floating gate disposed on the upper tunnel insulation layer, an intergate insulation layer disposed on the floating gate; and a control gate disposed on the intergate insulation layer.
    Type: Application
    Filed: November 24, 2008
    Publication date: July 16, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-kweon Baek, Sang-ryol Yang, Si-young Choi, Bon-young Koo, Ki-hyun Hwang, Dong-kak Lee
  • Patent number: 7510935
    Abstract: In an embodiment, a method of manufacturing a charge-trapping dielectric and a silicon-oxide-nitride-oxide-silicon (SONOS)-type non-volatile semiconductor device includes forming the charge-trapping dielectric, and a first oxide layer including silicon oxide. A silicon nitride layer including silicon-rich nitride is formed by a cyclic chemical vapor deposition (CVD) process using a silicon source material and a nitrogen source gas. A second oxide layer is formed on the silicon nitride layer. Hence, the charge-trapping dielectric having good erase characteristics is formed. In the SONOS-type non-volatile semiconductor device including the charge-trapping dielectric, a data erase process may be stably performed.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: March 31, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Hae Lee, Ju-Wan Lim, Jae-Young Ahn, Sang-Ryol Yang, Ki-Hyun Hwang