Patents by Inventor Sang Yoon Park

Sang Yoon Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180010688
    Abstract: Disclosed herein is a composite piston pin including a pipe-shaped outer layer made of reinforced fibers; an inner layer coupled to the outer layer along an inner surface of the outer layer, and made of reinforced fibers having lower elasticity than the outer layer; and a resin material including an epoxy resin composition and cyanate ester, and impregnated into the reinforced fibers of the outer layer and the inner layer.
    Type: Application
    Filed: November 16, 2016
    Publication date: January 11, 2018
    Applicants: Hyundai Motor Company, SK CHEMICALS CO., LTD.
    Inventors: Sang Yoon PARK, June Ho YANG, Sung Chul CHA, Chi Hoon CHOI, Seung Hyun HONG, Young Dae JO, Jae Won LEE
  • Publication number: 20170335063
    Abstract: Provided are a polyamic acid composition, a polyamideimide film thereof, and a method for preparing the polyamideimide film. More specifically, provided are a polyamideimide film capable of implementing excellent optical properties in addition to inherent physical properties of polyimide by using a polyamic acid composition including a combination of specific components, and a method for preparing the polyamideimide film.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 23, 2017
    Inventors: Sang Yoon Park, Hyeon Jeong Kim, Jin Hyung Park, Tae Sug Jang
  • Publication number: 20170307082
    Abstract: A hybrid piston pin and a manufacturing method thereof are provided. The hybrid piston pin includes a cylindrical pin formed of steel, a first reinforcement layer that is formed of a composite that includes reinforced fibers and a resin, having a cylindrical shape with a uniform thickness, and coupled to the interior surface of the cylindrical pin. A second reinforcement layer is formed of a composite that includes reinforced fibers having an elasticity that is less than the reinforced fibers of the first reinforcement layer. Further, a resin having a cylindrical shape with a uniform thickness is coupled to the interior surface of the first reinforcement layer.
    Type: Application
    Filed: November 15, 2016
    Publication date: October 26, 2017
    Inventors: Sang Yoon Park, Jeong Min Cho, Chi Hoon Choi, Jong Dae Lim, Hee Sam Kang
  • Publication number: 20170157801
    Abstract: Disclosed is a method of recovering reinforcement fibers from a fiber-reinforced part that includes the reinforcement fibers and is impregnated with resin. The method includes unwinding the reinforcement fibers from the fiber-reinforced part, dissolving the resin impregnated in the fiber-reinforced part, coating the resin-free reinforcement fiber with a sizing agent, and winding the sizing agent-coated reinforcement fibers around a mandrel.
    Type: Application
    Filed: September 13, 2016
    Publication date: June 8, 2017
    Inventors: June Ho Yang, Chi Hoon Choi, Sang Yoon Park, Jeong Min Cho, Young Ho Choi
  • Publication number: 20160375643
    Abstract: Disclosed is a method for manufacturing a composite reinforcement member, comprising: an impregnation step of impregnating a resin into reinforcement fibers withdrawn from a plurality of creels; a non-uniform distribution step of passing the resin-impregnated reinforcement fibers through a guide to adjust spaces among the reinforcement fibers in such a manner that the reinforcement fibers are distributed at different densities per area according to regions of the cross section of the composite reinforcement member; a forming step of directing the reinforcement fibers into a mold from the guide; and a curing step of curing the resin impregnated into the reinforcement fibers emerging from the mold.
    Type: Application
    Filed: December 22, 2015
    Publication date: December 29, 2016
    Inventors: Jeong Min Cho, Huen Sick Min, Chi Hoon Choi, Sang Yoon Park, Dae Won Kim, June Ho Yang
  • Patent number: 9390822
    Abstract: The present invention provides an oxidative decontamination reagent for removal of the dense radioactive oxide layer on a metal surface, which comprises an oxidizing agent, a metal ion, and an inorganic acid. The oxidative decontamination reagent of the present invention is characteristically prepared by adding a metal ion to the conventional oxidative decontamination reagent containing an oxidizing agent and an inorganic acid. When the oxidative decontamination reagent of the present invention is used, electric potential of the metal parts of the primary system of the nuclear power plant can be regulated as passive potential owing to the added metal ion during the oxidative decontamination of the primary metal part of the nuclear power plant. Therefore, by maintaining electric potential of the metal part as passive potential, local corrosion can be inhibited and at the same time secondary waste can be significantly reduced.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: July 12, 2016
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Sang Yoon Park, Hui-Jun Won, Wangkyu Choi, Jeikwon Moon, Chong-Hun Jung, In-Ho Yoon, Jun-Young Jung
  • Patent number: 9346125
    Abstract: An oxide dispersion strengthening (ODS) method of a metallic material using a laser is provided, which includes melting a surface of a metallic matrix placed on a movable stage by irradiating a laser onto the surface (step 1), supplying an oxide dispersion strengthening (ODS) powder at a site of the matrix surface which is melt at step 1 (step 2), and cooling the matrix in which the ODS powder is supplied at step 2 (step 3). Because oxide particles are directly supplied into previously-made sheet or tube matrix, fabrication process is simplified, fabrication cost is reduced, and end product is fabricated efficiently.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: May 24, 2016
    Assignees: KOREA ATOMIC ENERGY RESEARCH INSTITUTE, KOREA HYDRO AND NUCLEAR POWER CO., LTD
    Inventors: Sang Yoon Park, Byoung-Kwon Choi, Jeong-Yong Park, Il Hyun Kim, Yang-Il Jung, Dong Jun Park, Hyun Gil Kim
  • Patent number: 9202597
    Abstract: Disclosed are a zirconium alloy for a nuclear fuel cladding having a good corrosion resistance by reducing an amount of alloying elements and a method of preparing a zirconium alloy nuclear fuel cladding using thereof. The zirconium alloy includes 0.2 to 0.5 wt % of niobium (Nb); 0.2 to 0.6 wt % of iron (Fe); 0.3 to 0.5 wt % of chromium (Cr); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The total amount of the niobium, the iron and the chromium is 1.1 to 1.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic feasibility and safety.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: December 1, 2015
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Jeong-Yong Park, Byoung-Kwon Choi, Hyun Gil Kim, Sang Yoon Park, Yang-Il Jung, Dong Jun Park, Yang-Hyun Koo
  • Publication number: 20150337100
    Abstract: Disclosed herein is a transparent polyimide substrate, including: a transparent polyimide film; and a silicon oxide layer which is formed on one side or both sides of the transparent polyimide film and which includes a silicon oxide.
    Type: Application
    Filed: June 25, 2012
    Publication date: November 26, 2015
    Applicant: KOLON INDUSTRIES, INC
    Inventors: Hak Yong WOO, Hak Gee JUNG, Sang Yoon PARK
  • Publication number: 20150316252
    Abstract: Provided is a steam generator (1000) which comprises a water tank (200); a heater unit (300) connected with the water tank so as to heat the water; and a spraying unit (500) connected with the heater unit (300), wherein raw water heated by the heater unit (300) is in a high-temperature and high-pressure state in the heater unit (300), and the high-temperature and high-pressure raw water is converted into steam by decompression when sprayed to the outside by the spraying unit (500). The steam generator, according to the present invention, can generate steam without a separate electric power supply device, can generate steam that is harmless to the human body without generating ozone, and can generates an abundant amount of atomized steam through a process for directly heating the supplied raw water by using a heating member disposed in a housing and then secondarily heating the steam of which a phase is primarily changed so as to atomize steam particles, thereby suppressing the ejection of condensed water.
    Type: Application
    Filed: December 5, 2013
    Publication date: November 5, 2015
    Inventors: Jin Won PARK, Sang Yoon PARK, Hyo Sung KIM, Chan Jung PARK
  • Publication number: 20150259646
    Abstract: Provided is a method for isolating and proliferating autologous cancer antigen-specific CD8+T cells, and more particularly, a method for selecting an epitope recognized by CD8+ T cells from autologous cancer antigens present in blood of individual cancer patients; and isolating autologous cancer antigen-specific CD8+ T cells by using a peptide of the selected epitope, and a method of massively proliferating CD8+ T cells by using the method. According to the present invention, it is possible to isolate autologous cancer antigen-specific CD8+ T cells by using the peptide of the CD8 T cell epitope of the autologous cancer antigen present in blood of individual cancer patients instead of a heterologous antigen. Therefore, by using T cells recognizing the autologous cancer antigen, it is possible to effectively select and eliminate cancer cells derived from the cancer patient's own cells. Thus, T cells can be applied to treatment and alleviation of cancer diseases without side effects.
    Type: Application
    Filed: March 12, 2015
    Publication date: September 17, 2015
    Inventors: Byoung Se Kwon, Hyun-Guy Kang, Kwang-Hui Kim, Young-Woo Kim, Young-Ho Kim, Byung-Kiu Park, Sang-Yoon Park, Sang-Jae Park, Hyeon-Seok Eom, Ho-Sik Oh, Heon Yoo, Don-Gil Lee, Seung-Hoon Lee, Young-Joo Lee, Jin-Soo Lee, Beom-Kyu Choi
  • Patent number: 9136023
    Abstract: Disclosed are a zirconium alloy for a nuclear fuel cladding having a good corrosion resistance by reducing an amount of alloying elements and a method of preparing a zirconium alloy nuclear fuel cladding using thereof. The zirconium alloy includes 0.2 to 0.5 wt % of niobium (Nb); 0.2 to 0.6 wt % of iron (Fe); 0.3 to 0.5 wt % of chromium (Cr); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The total amount of the niobium, the iron and the chromium is 1.1 to 1.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic feasibility and safety.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: September 15, 2015
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Jeong-Yong Park, Byoung-Kwon Choi, Hyun Gil Kim, Sang Yoon Park, Yang-Il Jung, Dong Jun Park, Yang-Hyun Koo
  • Patent number: 9111650
    Abstract: Disclosed are a zirconium alloy for a nuclear fuel cladding having a good oxidation resistance in a severe reactor operation condition and a method of preparing zirconium alloy nuclear fuel claddings by using thereof. The zirconium alloy includes 1.8 to 2.0 wt % of niobium (Nb); at least one element selected from iron (Fe), chromium (Cr) and copper (Cu); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The amount of Fe is 0.1 to 0.4 wt %, the amount of Cr is 0.05 to 0.2 wt %, and the amount of Cu is 0.03 to 0.2 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under a severe reactor operation condition at an accident condition as well as a normal operating condition of a reactor, thereby improving economic efficiency and safety.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: August 18, 2015
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Jeong-Yong Park, Yang-Il Jung, Hyun Gil Kim, Byoung-Kwon Choi, Sang Yoon Park, Dong Jun Park, Yang-Hyun Koo
  • Patent number: 9099205
    Abstract: Disclosed are a zirconium alloy for a nuclear fuel cladding having a good oxidation resistance in reactor accident conditions, a zirconium alloy nuclear fuel cladding prepared by using thereof and a method of preparing the same. The zirconium alloy includes 1.0 to 1.2 wt % of niobium (Nb); at least one element selected from tin (Sn), iron (Fe) and chromium (Cr); 0.02 to 0.1 wt % of copper (Cu); 0.1 to 0.15 wt % of oxygen (O); 0.008 to 0.012 wt % of silicon (Si) and a remaining amount of zirconium (Zr). The amount of Sn is 0.1 to 0.3 wt %, the amount of Fe is 0.3 to 0.8 wt %, and the amount of Cr is 0.1 to 0.3 wt %. A good oxidation resistance of the nuclear fuel cladding may be confirmed under accident conditions as well as normal operating conditions of a reactor, thereby improving economic efficiency and safety.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: August 4, 2015
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Jeong-Yong Park, Hyun Gil Kim, Byoung-Kwon Choi, Sang Yoon Park, Yang-Il Jung, Dong Jun Park, Yang-Hyun Koo
  • Publication number: 20140378733
    Abstract: The present invention provides an oxidative decontamination reagent for removal of the dense radioactive oxide layer on a metal surface, which comprises an oxidizing agent, a metal ion, and an inorganic acid. The oxidative decontamination reagent of the present invention is characteristically prepared by adding a metal ion to the conventional oxidative decontamination reagent containing an oxidizing agent and an inorganic acid. When the oxidative decontamination reagent of the present invention is used, electric potential of the metal parts of the primary system of the nuclear power plant can be regulated as passive potential owing to the added metal ion during the oxidative decontamination of the primary metal part of the nuclear power plant. Therefore, by maintaining electric potential of the metal part as passive potential, local corrosion can be inhibited and at the same time secondary waste can be significantly reduced.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 25, 2014
    Applicant: KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Sang Yoon PARK, Hui-Jun WON, Wangkyu CHOI, Jeikwon MOON, Chong-Hun JUNG, In-Ho YOON, Jun-Young JUNG
  • Publication number: 20140205052
    Abstract: A chemical decontamination reagent containing a reducing agent, a reductive metal ion, and an inorganic acid is provided to remove a radioactive oxide layer on a metal surface. The reagent can dissolve the radioactive oxide layer on the metal surface effectively at a relatively low temperature and enables a simple process of contacting the reagent to the radioactive oxide, thus economically effective in terms of cost and time required for the process. Since the decontamination does not use a conventional organic chelating agent such as oxalic acid, but the reducing agent as a main substance, the residuals of the reducing agent remained after decontamination can be decomposed and removed with an oxidizing agent. Due to the easy decomposition with the chemical decontamination reagent, secondary wastes can be minimized and the radionuclides remained in the decontamination reagent solution can be removed effectively.
    Type: Application
    Filed: September 4, 2013
    Publication date: July 24, 2014
    Applicants: Korea Hydro And Nuclear Power Co., Ltd., Korea Atomic Energy Research Institute
    Inventors: Hui-Jun Won, Chong-Hun Jung, Sang Yoon Park, Wangkyu Choi, Jung-Sun Park, Jeikwon Moon, In-Ho Yoon, Byung-Seon Choi
  • Publication number: 20130299470
    Abstract: An oxide dispersion strengthening (ODS) method of a metallic material using a laser is provided, which includes melting a surface of a metallic matrix placed on a movable stage by irradiating a laser onto the surface (step 1), supplying an oxide dispersion strengthening (ODS) powder at a site of the matrix surface which is melt at step 1 (step 2), and cooling the matrix in which the ODS powder is supplied at step 2 (step 3). Because oxide particles are directly supplied into previously-made sheet or tube matrix, fabrication process is simplified, fabrication cost is reduced, and end product is fabricated efficiently.
    Type: Application
    Filed: February 8, 2013
    Publication date: November 14, 2013
    Applicants: KOREA HYDRO AND NUCLEAR POWER CO., LTD., KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Sang Yoon PARK, Byoung-Kwon CHOI, Jeong-Yong PARK, Il Hyun KIM, Yang-Il JUNG, Dong Jun PARK, Hyun Gil KIM
  • Publication number: 20130292873
    Abstract: The present invention relates to a method for preparing a polyimide film through a roll-to-roll method, and more specifically to a method for preparing a polyimide film with excellent optically isotropic properties through an annealing process during the manufacture of the polyimide film.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 7, 2013
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Ki ll Hong, Sang Yoon Park, Hyo Jun Park, Hak Gee Jung
  • Patent number: 8289264
    Abstract: A liquid crystal display (LCD) device is provided. The LCD device includes a liquid crystal panel, a backlight unit, first, second and third light emitting diode drivers, a light-intensity detector, and an adaptive light-intensity compensator. The backlight unit includes first, second and third light emitting diode arrays respectively generating red light, green light and blue light to provide white light to the liquid crystal panel. The first, second and third light emitting diode drivers generate operating voltages driving the first, second and third light emitting diode arrays, respectively. The light-intensity detector detects an intensity of white light provided to the liquid crystal panel. The adaptive light-intensity compensator controls the first, second and third light emitting diode drivers to compensate the intensities of the red light, the green light and the blue light, respectively.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 16, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Hyun Jin So, Sang Yoon Park
  • Publication number: 20120145287
    Abstract: Disclosed herein are a zirconium alloy composition, which exhibits excellent corrosion resistance by varying the kinds of metal oxides and controlling the size of precipitates of the composition, including: 1.05˜1.45 wt % of Nb; one or more selected from the group consisting of 0.1˜0.7 wt % of Fe and 0.05˜0.6 wt % of Cr; and residual Zr, and a method of preparing the same. The zirconium alloy composition exhibits excellent corrosion resistance by controlling the kinds and amounts of the elements included in the zirconium alloy composition and the heat-treatment temperature and thus varying the kinds of metal oxides formed during an oxidation process and controlling the size of precipitates of the zirconium alloy, so that it can be usefully used as a raw material for nuclear fuel cladding tubes, spacer grids, nuclear reactor internals and the like of a light-water reactor or a heavy-water reactor in a nuclear power plant.
    Type: Application
    Filed: February 25, 2009
    Publication date: June 14, 2012
    Applicant: Korea Atomic Energy Research Institute
    Inventors: Hyun Gil Kim, Yong Hwan Jeong, Byoung Kwon Choi, Sang Yoon Park, Myung Ho Lee, Jeong Yong Park, Jun Hwan Kim