Patents by Inventor Sang-jin Kwon
Sang-jin Kwon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12216317Abstract: A multi-channel optical sub-assembly includes a printed circuit board with a signal processor mounted thereon, a package window mounted on the printed circuit board, the package window including a transparent material, a package mounted on the package window, and an optical device accommodated into an inner space of the package and configured to convert an electrical signal, input from the signal processor, into an optical signal, wherein the electrical signal sequentially passes through a window through electrode buried in the package window and a package through electrode buried in the package and is input to the optical device.Type: GrantFiled: August 2, 2022Date of Patent: February 4, 2025Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTEInventors: Eun Kyu Kang, Jong Jin Lee, Dae Seon Kim, Sang Jin Kwon, Won Bae Kwon, Soo Yong Jung, Hae Chung Kang, Dae Woong Moon, Gye Sul Cho
-
Patent number: 12189194Abstract: An optical receiver sub-assembly is provided, which includes a substrate, an optical waveguide device mounted on the substrate to transfer ray incident from a ray source, and a photodetector mounted on the substrate and disposed under a vertical cross-sectional surface of the optical waveguide device, wherein the ray is sequentially reflected and refracted by an upper slope surface and a lower slope surface provided in the vertical cross-sectional surface and is vertically incident on an active area of the photodetector.Type: GrantFiled: July 12, 2022Date of Patent: January 7, 2025Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTEInventors: Won Bae Kwon, Jong Jin Lee, Eun Kyu Kang, Soo Yong Jung, Hae Chung Kang, Sang Jin Kwon, Dae Seon Kim
-
Patent number: 12021563Abstract: A highly integrated multi-channel optical module is provided. The optical module includes an optical source device mounted on a substrate by an optical source mount unit, a waveguide mounted on the substrate by a waveguide mount unit, a lens mount unit disposed between the optical source device and the waveguide and mounted on the substrate, and a lens unit fixed to the lens mount unit by an adhesive cured by ultraviolet (UV) parallel light, wherein a light path of the UV parallel light is formed in the lens mount unit by a reflector attached on a side surface of the lens mount unit, and the UV parallel light moves along the light path and cures the adhesive coated on an upper portion of the lens mount unit facing a lower end portion of the lens unit.Type: GrantFiled: June 28, 2022Date of Patent: June 25, 2024Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTEInventors: Hae Chung Kang, Eun Kyu Kang, Jong Jin Lee, Sang Jin Kwon, Won Bae Kwon, Dae Seon Kim, Dae Woong Moon, Soo Yong Jung, Gye Sul Cho
-
Publication number: 20230069724Abstract: An optical receiver sub-assembly is provided, which includes a substrate, an optical waveguide device mounted on the substrate to transfer ray incident from a ray source, and a photodetector mounted on the substrate and disposed under a vertical cross-sectional surface of the optical waveguide device, wherein the ray is sequentially reflected and refracted by an upper slope surface and a lower slope surface provided in the vertical cross-sectional surface and is vertically incident on an active area of the photodetector.Type: ApplicationFiled: July 12, 2022Publication date: March 2, 2023Inventors: Won Bae KWON, Jong Jin LEE, Eun Kyu KANG, Soo Yong JUNG, Hae Chung KANG, Sang Jin KWON, Dae Seon KIM
-
Publication number: 20230061382Abstract: A multi-channel optical sub-assembly includes a printed circuit board with a signal processor mounted thereon, a package window mounted on the printed circuit board, the package window including a transparent material, a package mounted on the package window, and an optical device accommodated into an inner space of the package and configured to convert an electrical signal, input from the signal processor, into an optical signal, wherein the electrical signal sequentially passes through a window through electrode buried in the package window and a package through electrode buried in the package and is input to the optical device.Type: ApplicationFiled: August 2, 2022Publication date: March 2, 2023Applicant: Electronics and Telecommunications Research InstituteInventors: Eun Kyu KANG, Jong Jin LEE, Dae Seon KIM, Sang Jin KWON, Won Bae KWON, Soo Yong JUNG, Hae Chung KANG, Dae Woong MOON, Gye Sul CHO
-
Publication number: 20230067645Abstract: A highly integrated multi-channel optical module is provided. The optical module includes an optical source device mounted on a substrate by an optical source mount unit, a waveguide mounted on the substrate by a waveguide mount unit, a lens mount unit disposed between the optical source device and the waveguide and mounted on the substrate, and a lens unit fixed to the lens mount unit by an adhesive cured by ultraviolet (UV) parallel light, wherein a light path of the UV parallel light is formed in the lens mount unit by a reflector attached on a side surface of the lens mount unit, and the UV parallel light moves along the light path and cures the adhesive coated on an upper portion of the lens mount unit facing a lower end portion of the lens unit.Type: ApplicationFiled: June 28, 2022Publication date: March 2, 2023Inventors: Hae Chung KANG, Eun Kyu KANG, Jong Jin LEE, Sang Jin KWON, Won Bae KWON, Dae Seon KIM, Dae Woong MOON, Soo Yong JUNG, Gye Sul CHO
-
Publication number: 20220094138Abstract: A structure and a manufacturing method of an optical transmission module, in which output light of each of a first optical transmission unit and a second optical transmission unit is combined into one and transmitted through an optical fiber. In order to manufacture the optical transmission module, the first optical transmission unit and the second optical transmission unit are separately manufactured using a wafer-level packaging process and then are stacked. As a result, emission of generated heat is divided into a first heat sink installed in the first optical transmission unit and a second heat sink installed in the second optical transmission unit so that better heat dissipation efficiency is achieved than a conventional optical transmission module. In addition, a mounting area may also be reduced to ½ of the conventional module.Type: ApplicationFiled: September 20, 2021Publication date: March 24, 2022Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTEInventors: Eun Kyu KANG, Jong Jin LEE, Dae Seon KIM, Eun Kyoung JEON, Sang Jin KWON, Won Bae KWON, Kwon Seob LIM, Soo Yong JUNG
-
Patent number: 11239222Abstract: Provided is a cooled optical transmission module device including a silicon wafer having a plurality of platform mounting grooves, each of which serves as a space for mounting in which an optical transmission platform therein, a thermoelectric cooler bonded to the platform mounting groove to transfer heat to outside, the optical transmission platform provided on the thermoelectric cooler and configured to output an optical signal by generating and reflecting the optical signal, a dielectric sub-mount bonded to the platform mounting groove of the silicon wafer and electrically connected to the mounted optical transmission platform, and a cover configured to cover the platform mounting groove of the silicon wafer and seal the platform mounting groove while providing an electric path.Type: GrantFiled: October 27, 2020Date of Patent: February 1, 2022Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTEInventors: Eun Kyu Kang, Jong Jin Lee, Sang Jin Kwon, Won Bae Kwon, Dae Seon Kim, Soo Yong Jung
-
Publication number: 20210125975Abstract: Provided is a cooled optical transmission module device including a silicon wafer having a plurality of platform mounting grooves, each of which serves as a space for mounting in which an optical transmission platform therein, a thermoelectric cooler bonded to the platform mounting groove to transfer heat to outside, the optical transmission platform provided on the thermoelectric cooler and configured to output an optical signal by generating and reflecting the optical signal, a dielectric sub-mount bonded to the platform mounting groove of the silicon wafer and electrically connected to the mounted optical transmission platform, and a cover configured to cover the platform mounting groove of the silicon wafer and seal the platform mounting groove while providing an electric path.Type: ApplicationFiled: October 27, 2020Publication date: April 29, 2021Inventors: Eun Kyu KANG, Jong Jin LEE, Sang Jin KWON, Won Bae KWON, Dae Seon KIM, Soo Yong JUNG
-
Patent number: 10795087Abstract: An ultra-small multi-channel optical module according to one embodiment of the present invention includes a base board, a glass substrate, a heat sink, optical elements, parallel light lenses, a first rectangular reflector, a glass cover, a second rectangular reflector, horizontal reflectors, and a light collecting lens.Type: GrantFiled: November 18, 2019Date of Patent: October 6, 2020Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTEInventors: Dae Seon Kim, Jong Jin Lee, Eun Kyu Kang, Sang Jin Kwon, Jeong Eun Kim, Kwon Seob Lim, Eun Kyoung Jeon, Soo Yong Jung
-
Patent number: 10693561Abstract: A transmitting apparatus includes an optical modulator configured to modulate input light from a light source into a light signal including a carrier signal and a sideband signal based on a radio frequency (RF) signal, having polarization characteristics crossing each other, an optical power splitter configured to split the light signal into a plurality of light signals, a plurality of light phase shifters configured to respectively shift phases of the plurality of light signals, a plurality of polarization controllers configured to perform control so that a carrier signal and a sideband signal included in each of the phase-shifted plurality of light signals have the same polarization characteristic, and a plurality of photodetectors configured to convert the plurality of light signals, having polarization characteristics controlled by the plurality of polarization controllers, into a plurality of electrical signals and to transfer the electrical signals to a plurality of antenna elements.Type: GrantFiled: August 22, 2019Date of Patent: June 23, 2020Assignee: Electronics and Telecommunications Research InstituteInventors: Kwon Seob Lim, Hyun Seo Kang, Dae Seon Kim, Sang Jin Kwon
-
Publication number: 20200158958Abstract: An ultra-small multi-channel optical module according to one embodiment of the present invention includes a base board, a glass substrate, a heat sink, optical elements, parallel light lenses, a first rectangular reflector, a glass cover, a second rectangular reflector, horizontal reflectors, and a light collecting lens.Type: ApplicationFiled: November 18, 2019Publication date: May 21, 2020Inventors: Dae Seon KIM, Jong Jin LEE, Eun Kyu KANG, Sang Jin KWON, Jeong Eun KIM, Kwon Seob LIM, Eun Kyoung JEON, Soo Yong JUNG
-
Publication number: 20200076511Abstract: A transmitting apparatus includes an optical modulator configured to modulate input light from a light source into a light signal including a carrier signal and a sideband signal based on a radio frequency (RF) signal, having polarization characteristics crossing each other, an optical power splitter configured to split the light signal into a plurality of light signals, a plurality of light phase shifters configured to respectively shift phases of the plurality of light signals, a plurality of polarization controllers configured to perform control so that a carrier signal and a sideband signal included in each of the phase-shifted plurality of light signals have the same polarization characteristic, and a plurality of photodetectors configured to convert the plurality of light signals, having polarization characteristics controlled by the plurality of polarization controllers, into a plurality of electrical signals and to transfer the electrical signals to a plurality of antenna elements.Type: ApplicationFiled: August 22, 2019Publication date: March 5, 2020Applicant: Electronics and Telecommunications Research InstituteInventors: Kwon Seob LIM, Hyun Seo KANG, Dae Seon KIM, Sang Jin KWON
-
Patent number: 8294472Abstract: A reliability evaluation system comprises a reliability evaluation circuit and a reliability evaluation control circuit. The reliability evaluation circuit includes a stress device array and a stress voltage generating block configured to receive a control voltage, generate stress voltages generated by using two reference voltages, and apply the stress voltages to the unit devices in a stress mode via first I/O lines according to the control voltage. The stress device array includes the unit devices that are matrix-arrayed. Each of the unit devices has a first terminal connected to one of the first I/O lines and a second terminal connected to one of second I/O lines. The reliability evaluation control circuit is configured to generate the control voltage and the two reference voltages, and test reliability of the unit devices by using the first I/O lines and the second I/O lines.Type: GrantFiled: March 9, 2010Date of Patent: October 23, 2012Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-jin Kwon, Jae-hoon Lee, Yong-ha Kang, Jong-won Lee
-
Publication number: 20120204707Abstract: The present invention relates to a method and apparatus for manufacturing a bullet charged with compressible composite explosives, process of the method comprising: 1) particle explosives is measured using constant quantity supplying device and is charged to a pallette mold; 2) the particle explosives is transferred to pellet-forming mold and then the particle explosives of the pellet-forming mold is molded under constant pressure to a pellet; 3) the pellet-forming mold is transported to the upper side of the bullet body fixing mold, thereby exiting the pellet of the pellet-forming mold, and the pellet which is inserted to the bullet of the bullet body fixing mold is pressed under constant pressure for charging; 4) the bullet with the pellet completely charged is transported to the bullet separating device; and 5) excess explosives is removed through cutting from said bullet.Type: ApplicationFiled: July 8, 2011Publication date: August 16, 2012Inventors: Jung Su Park, Hee Duck Park, Won Mo Shin, Sang Jin Kwon
-
Publication number: 20100231227Abstract: A reliability evaluation system comprises a reliability evaluation circuit and a reliability evaluation control circuit. The reliability evaluation circuit includes a stress device array and a stress voltage generating block configured to receive a control voltage, generate stress voltages generated by using two reference voltages, and apply the stress voltages to the unit devices in a stress mode via first I/O lines according to the control voltage. The stress device array includes the unit devices that are matrix-arrayed. Each of the unit devices has a first terminal connected to one of the first I/O lines and a second terminal connected to one of second I/O lines. The reliability evaluation control circuit is configured to generate the control voltage and the two reference voltages, and test reliability of the unit devices by using the first I/O lines and the second I/O lines.Type: ApplicationFiled: March 9, 2010Publication date: September 16, 2010Inventors: Sang-jin Kwon, Jae-hoon Lee, Yong-ha Kang, Jong-won Lee