Patents by Inventor Sang Kook Mah

Sang Kook Mah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9178212
    Abstract: A composite anode active material including metal core particles and carbon nanotubes that are covalently bound to the metal core particles, an anode including the composite anode active material, a lithium battery employing the anode, and a method of preparing the composite anode active material.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: November 3, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong-Hee Lee, Jeong-Na Heo, Ho-Suk Kang, Sang-Kook Mah, In-Taek Han
  • Patent number: 9178214
    Abstract: An anode active material for a lithium rechargeable battery, the anode active material including: a base material which is alloyable with lithium and a metal nitride disposed on the base material.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: November 3, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-kook Mah, Ryoung-hee Kim
  • Publication number: 20150155561
    Abstract: An anode including a current collector; an anode active material layer disposed on the current collector, and a lithium-containing organic compound disposed on a surface of the anode active material layer
    Type: Application
    Filed: July 14, 2014
    Publication date: June 4, 2015
    Inventors: Gue-sung KIM, Sang-kook MAH, Woon-jung PAEK, Myung-jin LEE
  • Publication number: 20140295273
    Abstract: An anode, a lithium battery including the anode, and a method of manufacturing the anode. The anode includes: an anode active material including a metal alloyable with lithium; and a metal-carbon composite conducting agent having a density of 3.0 grams per cubic centimeter or greater.
    Type: Application
    Filed: November 1, 2013
    Publication date: October 2, 2014
    Applicants: Samsung SDI Co., Ltd., Samsung Electronics Co., Ltd.
    Inventors: Sang-kook MAH, Jeong-kuk SHON
  • Patent number: 8697280
    Abstract: An electrode active material, a method of preparing the electrode active material, an electrode including the electrode active material, and a lithium secondary battery including the electrode; the electrode active material comprising a core active material; and a coating layer formed on a surface of the core active material, wherein the coating layer comprises a composition including a compound represented by Formula 1 below and a carbonaceous material, or a first coating layer including a carbonaceous material and a second coating layer including the compound represented by Formula 1 below: LixMy(PO4)z,??Formula 1 where M is selected from the group consisting of alkali metal, alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth element, and combinations thereof; 1?x?3, 0?y?3, and 1?z?3.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-kook Mah, Gue-sung Kim
  • Publication number: 20140070147
    Abstract: A composite anode active material including metal core particles and carbon nanotubes that are covalently bound to the metal core particles, an anode including the composite anode active material, a lithium battery employing the anode, and a method of preparing the composite anode active material.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 13, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong-Hee Lee, Jeong-Na Heo, Ho-Suk Kang, Sang-Kook Mah, In-Taek Han
  • Patent number: 8653297
    Abstract: A solid acid having a core of calixarene or calix resorcinarene. The solid acid is an ion conducting compound in which at least one of the hydroxyl groups is substituted by an organic group having a cation exchange group at a terminal end, a polymer electrolyte membrane including the same, and a fuel cell using the polymer electrolyte membrane. The polymer electrolyte membrane can provide low methanol crossover and high ionic conductivity. Accordingly, a fuel cell having high efficiency can be obtained by using the polymer electrolyte membrane.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 18, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-jun Lee, Myung-sup Jung, Do-yun Kim, Jin-gyu Lee, Sang-kook Mah
  • Patent number: 8617746
    Abstract: An Si/C composite includes carbon (C) dispersed in porous silicon (Si) particles. The Si/C composite may be used to form an anode active material to provide a lithium battery having a high capacity and excellent capacity retention.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: December 31, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kook Mah, Han-su Kim
  • Patent number: 8608983
    Abstract: A composite anode active material including metal core particles and carbon nanotubes that are covalently bound to the metal core particles, an anode including the composite anode active material, a lithium battery employing the anode, and a method of preparing the composite anode active material.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-hee Lee, Jeong-na Heo, Ho-suk Kang, Sang-kook Mah, In-taek Han
  • Patent number: 8562869
    Abstract: Provided are a porous anode active material, a method of preparing the same, and an anode and a lithium battery employing the same. The porous anode active material includes fine particles of metallic substance capable of forming a lithium alloy; a crystalline carboneous substance; and a porous carboneous material coating and attaching to the fine particles of metallic substance and the crystalline carboneous substance, the porous anode active material having pores exhibiting a bimodal size distribution with two pore diameter peaks as measured by a Barrett-Joyner-Halenda (BJH) pore size distribution from a nitrogen adsorption. The porous anode active material has the pores having a bimodal size distribution, and thus may efficiently remove a stress occurring due to a difference of expansion between a carboneous material and a metallic active material during charging and discharging.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 22, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kook Mah, Han-su Kim, Dong-min Im
  • Patent number: 8546017
    Abstract: Provided is a composite for anode material, a method of manufacturing the composite for anode material, and a cathode and a lithium battery that includes the composite for anode material, and more particularly, to a composite for anode material that has a large charge and discharge capacity and a high capacity retention, a method of manufacturing the composite for anode material, and a cathode and a lithium battery that includes the composite for anode material. Also, the composite for anode material in which Si or Si and carbon are distributed in silicon oxide particles is provided.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 1, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kook Mah, Han-su Kim
  • Publication number: 20120328943
    Abstract: An Si/C composite includes carbon (C) dispersed in porous silicon (Si) particles. The Si/C composite may be used to form an anode active material to provide a lithium battery having a high capacity and excellent capacity retention.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Inventors: Sang-kook MAH, Han-su KIM
  • Patent number: 8309252
    Abstract: Silicon oxide based composite anode active materials including amorphous silicon oxides are provided. In one embodiment, the amorphous silicon oxide is represented by SiOx (where 0<x<2), has a binding energy of about 103 to about 106 eV, a silicon peak with a full width at half maximum (FWHM) ranging from about 1.6 to about 2.4 as measured by X-ray photoelectron spectrometry, and an atomic percentage of silicon greater than or equal to about 10 as calculated from an area of the silicon peak. The anode active material is a composite anode active material obtained by sintering hydrogen silsesquioxane (HSQ). Anodes and lithium batteries including the anode active material exhibit improved charge and discharge characteristics.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: November 13, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Han-su Kim, Sang-kook Mah
  • Patent number: 8293851
    Abstract: A sulfonated copolymer including a crosslinking functional group and a fuel cell including a polymer composition of the same are provided. The sulfonated copolymer including a crosslinking functional group can remarkably reduce methanol crossover and maintain superior dimensional stability and ionic conductivity by reducing swelling.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: October 23, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-Jun Lee, Do-yun Kim, Sang-kook Mah
  • Publication number: 20120258362
    Abstract: An electrode active material, a method of preparing the electrode active material, an electrode including the electrode active material, and a lithium secondary battery including the electrode; the electrode active material comprising a core active material; and a coating layer formed on a surface of the core active material, wherein the coating layer comprises a composition including a compound represented by Formula 1 below and a carbonaceous material, or a first coating layer including a carbonaceous material and a second coating layer including the compound represented by Formula 1 below: LixMy(PO4)z, ??Formula 1 where M is selected from the group consisting of alkali metal, alkaline earth metal, a group 13 element, a group 14 element, a transition metal, a rare earth element, and combinations thereof; 1?x?3, 0?y?3, and 1?z?3.
    Type: Application
    Filed: September 23, 2011
    Publication date: October 11, 2012
    Applicant: Samsung Electronics Co. Ltd.
    Inventors: Sang-kook MAH, Gue-sung KIM
  • Patent number: 8263265
    Abstract: An Si/C composite includes carbon (C) dispersed in porous silicon (Si) particles. The Si/C composite may be used to form an anode active material to provide a lithium battery having a high capacity and excellent capacity retention.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: September 11, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kook Mah, Han-su Kim
  • Publication number: 20120045711
    Abstract: A solid acid having a core of calixarene or calix resorcinarene. The solid acid is an ion conducting compound in which at least one of the hydroxyl groups is substituted by an organic group having a cation exchange group at a terminal end, a polymer electrolyte membrane including the same, and a fuel cell using the polymer electrolyte membrane. The polymer electrolyte membrane can provide low methanol crossover and high ionic conductivity. Accordingly, a fuel cell having high efficiency can be obtained by using the polymer electrolyte membrane.
    Type: Application
    Filed: September 21, 2011
    Publication date: February 23, 2012
    Applicant: SAMSUNG SDI CO., LTD
    Inventors: Jae-jun Lee, Myung-sup Jung, Do-yun Kim, Jin-gyu Lee, Sang-kook Mah
  • Patent number: 8119833
    Abstract: Provided are a dendrimer solid acid and a polymer electrolyte membrane using the same. The polymer electrolyte membrane includes a macromolecule of a dendrimer solid acid having ionically conductive terminal groups at the surface thereof and a minimum amount of ionically conductive terminal groups required for ionic conduction, thus suppressing swelling and allowing a uniform distribution of the dendrimer solid acid, thereby improving ionic conductivity. Since the number of ionically conductive terminal groups in the polymer electrolyte membrane is minimized and the polymer matrix in which swelling is suppressed is used, methanol crossover and difficulties of outflow due to a large volume may be reduced, and a macromolecule of the dendrimer solid acid having the ionically conductive terminal groups on the surface thereof is uniformly distributed. Accordingly, ionic conductivity is high and thus, the polymer electrolyte membrane shows good ionic conductivity even in non-humidified conditions.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: February 21, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myung-sup Jung, Jin-gyu Lee, Sang-kook Mah, Jae-jun Lee
  • Publication number: 20120013051
    Abstract: Provided are a porous anode active material, a method of preparing the same, and an anode and a lithium battery employing the same. The porous anode active material includes fine particles of metallic substance capable of forming a lithium alloy; a crystalline carboneous substance; and a porous carboneous material coating and attaching to the fine particles of metallic substance and the crystalline carboneous substance, the porous anode active material having pores exhibiting a bimodal size distribution with two pore diameter peaks as measured by a Barrett-Joyner-Halenda (BJH) pore size distribution from a nitrogen adsorption. The porous anode active material has the pores having a bimodal size distribution, and thus may efficiently remove a stress occurring due to a difference of expansion between a carboneous material and a metallic active material during charging and discharging.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 19, 2012
    Applicant: SAMSUNG SDI CO., LTD
    Inventors: Sang-kook Mah, Han-su Kim, Dong-min Im
  • Patent number: 8057952
    Abstract: A polymer electrolyte membrane, a method of manufacturing the same, and a fuel cell including the polymer electrolyte membrane are provided, wherein the polymer electrolyte forms an interpenetrating polymer network (IPN) of a polymer by simple blending of a hydrophobic polyimide having a reactive terminal group and a hydrophilic aromatic polymer having ion conductivity. The polymer electrolyte membrane has reduced swelling properties due to highly dense crosslinking of polyimide through the reactive terminal group, shows high ion conductivity at low humidity, and has methanol crossover suppressing ability. Accordingly, a fuel cell with improved electric and mechanical properties can be provided.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: November 15, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myung-sup Jung, Sang-kook Mah, Do-yun Kim, Jin-gyu Lee