Patents by Inventor Sanjay Ghemawat
Sanjay Ghemawat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250077474Abstract: A method for deleting obsolete files from a file system is provided. The method includes receiving a request to delete a reference to a first target file of a plurality of target files stored in a file system, the first target file having a first target file name. A first reference file whose file name includes the first target file name is identified. The first reference file is deleted from the file system. The method further includes determining whether the file system includes at least one reference file, distinct from the first reference file, whose file name includes the first target file name. In accordance with a determination that the file system does not include the at least one reference file, the first target file is deleted from the file system.Type: ApplicationFiled: August 5, 2024Publication date: March 6, 2025Inventors: Yasushi Saito, Sanjay Ghemawat, Jeffrey Adgate Dean
-
Publication number: 20250053444Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for distributing machine learning workloads, e.g., computations for training a neural network or computing an inference using a neural network, across multiple hardware accelerators.Type: ApplicationFiled: August 23, 2024Publication date: February 13, 2025Inventors: Jeffrey Adgate Dean, Sudip Roy, Michael Acheson Isard, Aakanksha Chowdhery, Brennan Saeta, Chandramohan Amyangot Thekkath, Daniel William Hurt, Hyeontaek Lim, Laurent El Shafey, Parker Edward Schuh, Paul Ronald Barham, Ruoming Pang, Ryan Sepassi, Sanjay Ghemawat, Yonghui Wu
-
Patent number: 12112198Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for distributing machine learning workloads, e.g., computations for training a neural network or computing an inference using a neural network, across multiple hardware accelerators.Type: GrantFiled: December 15, 2022Date of Patent: October 8, 2024Assignee: Google LLCInventors: Jeffrey Adgate Dean, Sudip Roy, Michael Acheson Isard, Aakanksha Chowdhery, Brennan Saeta, Chandramohan Amyangot Thekkath, Daniel William Hurt, Hyeontaek Lim, Laurent El Shafey, Parker Edward Schuh, Paul Ronald Barham, Ruoming Pang, Ryan Sepassi, Sanjay Ghemawat, Yonghui Wu
-
Patent number: 12056089Abstract: A method for deleting obsolete files from a file system is provided. The method includes receiving a request to delete a reference to a first target file of a plurality of target files stored in a file system, the first target file having a first target file name. A first reference file whose file name includes the first target file name is identified. The first reference file is deleted from the file system. The method further includes determining whether the file system includes at least one reference file, distinct from the first reference file, whose file name includes the first target file name. In accordance with a determination that the file system does not include the at least one reference file, the first target file is deleted from the file system.Type: GrantFiled: August 29, 2023Date of Patent: August 6, 2024Assignee: Google LLCInventors: Yasushi Saito, Sanjay Ghemawat, Jeffrey Adgate Dean
-
Publication number: 20240160948Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for receiving a request from a client to process a computational graph; obtaining data representing the computational graph, the computational graph comprising a plurality of nodes and directed edges, wherein each node represents a respective operation, wherein each directed edge connects a respective first node to a respective second node that represents an operation that receives, as input, an output of an operation represented by the respective first node; identifying a plurality of available devices for performing the requested operation; partitioning the computational graph into a plurality of subgraphs, each subgraph comprising one or more nodes in the computational graph; and assigning, for each subgraph, the operations represented by the one or more nodes in the subgraph to a respective available device in the plurality of available devices for operation.Type: ApplicationFiled: August 18, 2023Publication date: May 16, 2024Inventors: Paul A. Tucker, Jeffrey Adgate Dean, Sanjay Ghemawat, Yuan Yu
-
Publication number: 20230409527Abstract: A method for deleting obsolete files from a file system is provided. The method includes receiving a request to delete a reference to a first target file of a plurality of target files stored in a file system, the first target file having a first target file name. A first reference file whose file name includes the first target file name is identified. The first reference file is deleted from the file system. The method further includes determining whether the file system includes at least one reference file, distinct from the first reference file, whose file name includes the first target file name. In accordance with a determination that the file system does not include the at least one reference file, the first target file is deleted from the file system.Type: ApplicationFiled: August 29, 2023Publication date: December 21, 2023Inventors: Yasushi Saito, Sanjay Ghemawat, Jeffrey Adgate Dean
-
Publication number: 20230385262Abstract: A method performs large-scale data processing in a distributed and parallel processing environment. The method defines application-independent map and reduce operations, each invoking one or more library functions that automatically handle data partitioning, parallelization of computations, and fault tolerance. A user specifies a map operation, which calls one or more of the application-independent map operators to perform data read and write operations. A user also specifies a reduce operation, which calls one or more of the application-independent reduce operators to perform data read and write operations. The method executes application-independent map worker processes. Each map worker process executes the user-specified map operation to read designated portions of input files and store intermediate data values in intermediate data structures. The method also executes application-independent reduce worker processes.Type: ApplicationFiled: April 21, 2023Publication date: November 30, 2023Inventors: Jeffrey Dean, Sanjay Ghemawat
-
Patent number: 11822521Abstract: A method of accessing data includes storing a table that includes a plurality of tablets corresponding to distinct non-overlapping table portions. Respective pluralities of tablet access objects and application objects are stored in a plurality of servers. A distinct application object and distinct tablet are associated with each tablet access object. Each application object corresponds to a distinct instantiation of an application associated with the table. The tablet access objects and associated application objects are redistributed among the servers in accordance with a first load-balancing criterion. A first request directed to a respective tablet is received from a client. In response, the tablet access object associated with the respective tablet is used to perform a data access operation on the respective tablet, and the application object associated with the respective tablet is used to perform an additional computational operation to produce a result to be returned to the client.Type: GrantFiled: February 14, 2022Date of Patent: November 21, 2023Assignee: Google LLCInventors: Jeffrey Adgate Dean, Sanjay Ghemawat, Andrew Fikes, Yasushi Saito
-
Patent number: 11775480Abstract: A method for deleting obsolete files from a file system is provided. The method includes receiving a request to delete a reference to a first target file of a plurality of target files stored in a file system, the first target file having a first target file name. A first reference file whose file name includes the first target file name is identified. The first reference file is deleted from the file system. The method further includes determining whether the file system includes at least one reference file, distinct from the first reference file, whose file name includes the first target file name. In accordance with a determination that the file system does not include the at least one reference file, the first target file is deleted from the file system.Type: GrantFiled: June 17, 2021Date of Patent: October 3, 2023Assignee: Google LLCInventors: Yasushi Saito, Sanjay Ghemawat, Jeffrey Adgate Dean
-
Patent number: 11769061Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for receiving a request from a client to process a computational graph; obtaining data representing the computational graph, the computational graph comprising a plurality of nodes and directed edges, wherein each node represents a respective operation, wherein each directed edge connects a respective first node to a respective second node that represents an operation that receives, as input, an output of an operation represented by the respective first node; identifying a plurality of available devices for performing the requested operation; partitioning the computational graph into a plurality of subgraphs, each subgraph comprising one or more nodes in the computational graph; and assigning, for each subgraph, the operations represented by the one or more nodes in the subgraph to a respective available device in the plurality of available devices for operation.Type: GrantFiled: June 11, 2020Date of Patent: September 26, 2023Assignee: Google LLCInventors: Paul A. Tucker, Jeffrey Adgate Dean, Sanjay Ghemawat, Yuan Yu
-
Patent number: 11650971Abstract: A method performs large-scale data processing in a distributed and parallel processing environment. The method defines application-independent map and reduce operations, each invoking one or more library functions that automatically handle data partitioning, parallelization of computations, and fault tolerance. A user specifies a map operation, which calls one or more of the application-independent map operators to perform data read and write operations. A user also specifies a reduce operation, which calls one or more of the application-independent reduce operators to perform data read and write operations. The method executes application-independent map worker processes. Each map worker process executes the user-specified map operation to read designated portions of input files and store intermediate data values in intermediate data structures. The method also executes application-independent reduce worker processes.Type: GrantFiled: June 7, 2022Date of Patent: May 16, 2023Assignee: Google LLCInventors: Jeffrey Adgate Dean, Sanjay Ghemawat
-
Publication number: 20230118303Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for distributing machine learning workloads, e.g., computations for training a neural network or computing an inference using a neural network, across multiple hardware accelerators.Type: ApplicationFiled: December 15, 2022Publication date: April 20, 2023Inventors: Jeffrey Adgate Dean, Sudip Roy, Michael Acheson Isard, Aakanksha Chowdhery, Brennan Saeta, Chandramohan Amyangot Thekkath, Daniel William Hurt, Hyeontaek Lim, Laurent El Shafey, Parker Edward Schuh, Paul Ronald Barham, Ruoming Pang, Ryan Sepassi, Sanjay Ghemawat, Yonghui Wu
-
Patent number: 11556381Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for distributing machine learning workloads, e.g., computations for training a neural network or computing an inference using a neural network, across multiple hardware accelerators.Type: GrantFiled: May 6, 2022Date of Patent: January 17, 2023Assignee: Google LLCInventors: Jeffrey Adgate Dean, Sudip Roy, Michael Acheson Isard, Aakanksha Chowdhery, Brennan Saeta, Chandramohan Amyangot Thekkath, Daniel William Hurt, Hyeontaek Lim, Laurent El Shafey, Parker Edward Schuh, Paul Ronald Barham, Ruoming Pang, Ryan Sepassi, Sanjay Ghemawat, Yonghui Wu
-
Publication number: 20220405264Abstract: A method performs large-scale data processing in a distributed and parallel processing environment. The method defines application-independent map and reduce operations, each invoking one or more library functions that automatically handle data partitioning, parallelization of computations, and fault tolerance. A user specifies a map operation, which calls one or more of the application-independent map operators to perform data read and write operations. A user also specifies a reduce operation, which calls one or more of the application-independent reduce operators to perform data read and write operations. The method executes application-independent map worker processes. Each map worker process executes the user-specified map operation to read designated portions of input files and store intermediate data values in intermediate data structures. The method also executes application-independent reduce worker processes.Type: ApplicationFiled: June 7, 2022Publication date: December 22, 2022Inventors: Jeffrey Adgate Dean, Sanjay Ghemawat
-
Publication number: 20220357985Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for distributing machine learning workloads, e.g., computations for training a neural network or computing an inference using a neural network, across multiple hardware accelerators.Type: ApplicationFiled: May 6, 2022Publication date: November 10, 2022Inventors: Jeffrey Adgate Dean, Sudip Roy, Michael Acheson Isard, Aakanksha Chowdhery, Brennan Saeta, Chandramohan Amyangot Thekkath, Daniel William Hurt, Hyeontaek Lim, Laurent El Shafey, Parker Edward Schuh, Paul Ronald Barham, Ruoming Pang, Ryan Sepassi, Sanjay Ghemawat, Yonghui Wu
-
Patent number: 11429355Abstract: A programming model provides a method for type inference in programming operations. Information defining one or more attributes of an operation is received, the information specifying a field including a field name and a field type identifier for each of the attributes. Constraints for the operation are determined at least based on the attributes, wherein the constraints restrict at least one of a type of input for the operation or a type of output for the operation. Information defining an input for the operation is received, and it is determined, based on the constraints and the received information defining the input, the type of output for the operation. The type of output is associated with an output for the operation.Type: GrantFiled: March 30, 2020Date of Patent: August 30, 2022Assignee: Google LLCInventors: Gautham Thambidorai, Matthew Rosencrantz, Sanjay Ghemawat, Srdjan Petrovic, Ivan Posva
-
Publication number: 20220222219Abstract: A method of accessing data includes storing a table that includes a plurality of tablets corresponding to distinct non-overlapping table portions. Respective pluralities of tablet access objects and application objects are stored in a plurality of servers. A distinct application object and distinct tablet are associated with each tablet access object. Each application object corresponds to a distinct instantiation of an application associated with the table. The tablet access objects and associated application objects are redistributed among the servers in accordance with a first load-balancing criterion. A first request directed to a respective tablet is received from a client. In response, the tablet access object associated with the respective tablet is used to perform a data access operation on the respective tablet, and the application object associated with the respective tablet is used to perform an additional computational operation to produce a result to be returned to the client.Type: ApplicationFiled: February 14, 2022Publication date: July 14, 2022Inventors: Jeffrey Adgate Dean, Sanjay Ghemawat, Andrew Fikes, Yasushi Saito
-
Patent number: 11366797Abstract: A method performs large-scale data processing in a distributed and parallel processing environment. The method defines application-independent map and reduce operations, each invoking one or more library functions that automatically handle data partitioning, parallelization of computations, and fault tolerance. A user specifies a map operation, which calls one or more of the application-independent map operators to perform data read and write operations. A user also specifies a reduce operation, which calls one or more of the application-independent reduce operators to perform data read and write operations. The method executes application-independent map worker processes. Each map worker process executes the user-specified map operation to read designated portions of input files and store intermediate data values in intermediate data structures. The method also executes application-independent reduce worker processes.Type: GrantFiled: December 28, 2020Date of Patent: June 21, 2022Assignee: Google LLCInventors: Jeffrey Dean, Sanjay Ghemawat
-
Publication number: 20220171781Abstract: Systems and methods for analyzing input data records are provided in which a master process initiates a plurality of concurrent first processes each of which comprises, for each data record in at least a subset of a plurality of input data records, creating a parsed representation of the data record and independently applying a procedural language query to the parsed representation to extract one or more values. A respective emit operator is applied to at least one of the extracted one or more values thereby adding corresponding information to a respective intermediate data structure. The respective emit operator implements one of a predefined set of statistical information processing functions. The master process also initiates a plurality of second processes each of which aggregates information from a corresponding subset of intermediate data structures to produce aggregated data that is, in turn, combined to produce output data.Type: ApplicationFiled: February 16, 2022Publication date: June 2, 2022Inventors: Robert C. Pike, Sean Quinlan, Sean M. Dorward, Jeffrey Dean, Sanjay Ghemawat
-
Patent number: 11281631Abstract: A method of accessing data includes storing a table that includes a plurality of tablets corresponding to distinct non-overlapping table portions. Respective pluralities of tablet access objects and application objects are stored in a plurality of servers. A distinct application object and distinct tablet are associated with each tablet access object. Each application object corresponds to a distinct instantiation of an application associated with the table. The tablet access objects and associated application objects are redistributed among the servers in accordance with a first load-balancing criterion. A first request directed to a respective tablet is received from a client. In response, the tablet access object associated with the respective tablet is used to perform a data access operation on the respective tablet, and the application object associated with the respective tablet is used to perform an additional computational operation to produce a result to be returned to the client.Type: GrantFiled: July 13, 2020Date of Patent: March 22, 2022Assignee: Google LLCInventors: Jeffrey Dean, Sanjay Ghemawat, Andrew Fikes, Yasushi Saito