Patents by Inventor Sanjay Jeyakumar

Sanjay Jeyakumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12255915
    Abstract: Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: March 18, 2025
    Assignee: Abnormal Security Corporation
    Inventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan James Reiser, Sanny Xiao Yang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
  • Patent number: 12231453
    Abstract: Techniques for producing records of digital activities that are performed with accounts associated with employees of enterprises are disclosed. Such techniques can be used to ensure that records are created for digital activities that are deemed unsafe and for digital activities that are deemed safe by a threat detection platform. At a high level, more comprehensively recording digital activities not only provides insight into the behavior of individual accounts, but also provides insight into the holistic behavior of employees across multiple accounts. These records may be stored in a searchable datastore to enable expedient and efficient review.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: February 18, 2025
    Assignee: Abnormal Security Corporation
    Inventors: Jeremy Kao, Kai Jing Jiang, Sanjay Jeyakumar, Yea So Jung, Carlos Daniel Gasperi, Justin Anthony Young
  • Publication number: 20240356951
    Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.
    Type: Application
    Filed: April 24, 2024
    Publication date: October 24, 2024
    Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
  • Publication number: 20240354680
    Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.
    Type: Application
    Filed: April 24, 2024
    Publication date: October 24, 2024
    Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
  • Publication number: 20240356959
    Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.
    Type: Application
    Filed: April 24, 2024
    Publication date: October 24, 2024
    Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
  • Publication number: 20240356938
    Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.
    Type: Application
    Filed: April 24, 2024
    Publication date: October 24, 2024
    Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
  • Patent number: 12081522
    Abstract: Introduced here are threat detection platforms designed to discover possible instances of email account compromise in order to identify threats to an enterprise. In particular, a threat detection platform can examine the digital activities performed with the email accounts associated with employees of the enterprise to determine whether any email accounts are exhibiting abnormal behavior. Examples of digital activities include the reception of an incoming email, transmission of an outgoing email, creation of a mail filter, and occurrence of a sign-in event (also referred to as a “login event”). Thus, the threat detection platform can monitor the digital activities performed with a given email account to determine the likelihood that the given email account has been compromised.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: September 3, 2024
    Assignee: Abnormal Security Corporation
    Inventors: Dmitry Chechik, Umut Gultepe, Raphael Kargon, Jeshua Alexis Bratman, Cheng-Lin Yeh, Sanny Xiao Lang Liao, Erin Elisabeth Edkins Ludert, Sanjay Jeyakumar, Hariank Sagar Muthakana
  • Publication number: 20240291834
    Abstract: Access to emails delivered to an employee of an enterprise is received. An incoming email addressed to the employee is acquired. A primary attribute is extracted from the incoming email by parsing at least one of: (1) content of the incoming email or (2) metadata associated with the incoming email. It is determined whether the incoming email deviates from past email activity, at least in part by determining, as a secondary attribute, a mismatch between a previous value for the primary attribute and a current value for the primary attribute, using a communication profile associated with the employee, and providing a measured deviation to at least one machine learning model.
    Type: Application
    Filed: March 26, 2024
    Publication date: August 29, 2024
    Inventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan Reiser, Sanny Xiao Lang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
  • Publication number: 20240171596
    Abstract: A message addressed to a user is received. A first model is applied to the message to produce a first output indicative of whether the message is representative of a non-malicious message. The first model is trained using past messages that have been verified as non-malicious messages. It is determined, based on the first output, that the message is potentially a malicious message. Responsive to determining that the message is potentially a malicious email based on the first output, apply a second model to the message to produce a second output indicative of whether the message is representative of a given type of attack. The second model is one of a plurality of models. At least one model included in the plurality of models is associated with characterizing a goal of the malicious message. An action is performed with respect to the message based on the second output.
    Type: Application
    Filed: September 26, 2023
    Publication date: May 23, 2024
    Inventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan Reiser, Sanny Xiao Lang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
  • Patent number: 11973772
    Abstract: Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: April 30, 2024
    Assignee: Abnormal Security Corporation
    Inventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan Reiser, Sanny Xiao Lang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
  • Patent number: 11943257
    Abstract: Selectively rewriting URLs is disclosed. An indication is received that a message has arrived at a user message box. A determination is made that the message includes a first link to a first resource. The first link is analyzed to determine whether the first link is classified as a non-rewrite link. In response to determining that the first link is not classified as a non-rewrite link, a first replacement link is generated for the first link.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: March 26, 2024
    Assignee: Abnormal Security Corporation
    Inventors: Yea So Jung, Su Li Debbie Tan, Kai Jing Jiang, Fang Shuo Deng, Yu Zhou Lee, Rami F. Habal, Oz Wasserman, Sanjay Jeyakumar
  • Patent number: 11831661
    Abstract: A plurality of features associated with a message are determined. At least one feature included in the plurality of features is associated with a payload of the message. A determination is made that supplemental analysis should be performed on the message. The determination is based at least in part on performing behavioral analysis using at least some of the features included in the plurality of features. Supplemental analysis is performed.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: November 28, 2023
    Assignee: Abnormal Security Corporation
    Inventors: Yu Zhou Lee, Micah J. Zirn, Umut Gultepe, Jeshua Alexis Bratman, Michael Douglas Kralka, Cheng-Lin Yeh, Dmitry Chechik, Sanjay Jeyakumar
  • Patent number: 11824870
    Abstract: Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: November 21, 2023
    Assignee: Abnormal Security Corporation
    Inventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan James Reiser, Sanny Xiao Yang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
  • Patent number: 11743294
    Abstract: Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: August 29, 2023
    Assignee: Abnormal Security Corporation
    Inventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan James Reiser, Sanny Xiao Yang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
  • Patent number: 11706247
    Abstract: Techniques for detecting instances of external fraud by monitoring digital activities that are performed with accounts associated with an enterprise are disclosed. In one example, a threat detection platform determines the likelihood that an incoming email is indicative of external fraud based on the context and content of the incoming email. To understand the risk posed by an incoming email, the threat detection platform may seek to determine not only whether the sender normally communicates with the recipient, but also whether the topic is one normally discussed by the sender and recipient. In this way, the threat detection platform can establish whether the incoming email deviates from past emails exchanged between the sender and recipient.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: July 18, 2023
    Assignee: Abnormal Security Corporation
    Inventors: Yu Zhou Lee, Lawrence Stockton Moore, Jeshua Alexis Bratman, Lei Xu, Sanjay Jeyakumar
  • Patent number: 11704406
    Abstract: Deriving and surfacing insights regarding security threats is disclosed. A plurality of features associated with a message is determined. A plurality of facet models is used to analyze the determined features. Based at least in part on the analysis, it is determined that the message poses a security threat. A prioritized set of information is determined to be provided as output that is representative of why the message was determined to pose a security threat. At least a portion of the prioritized set of information is provided as output.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: July 18, 2023
    Assignee: Abnormal Security Corporation
    Inventors: Yu Zhou Lee, Kai Jiang, Su Li Debbie Tan, Geng Sng, Cheng-Lin Yeh, Lawrence Stockton Moore, Sanny Xiao Lang Liao, Joey Esteban Cerquera, Jeshua Alexis Bratman, Sanjay Jeyakumar, Nishant Bhalchandra Karandikar
  • Publication number: 20230224329
    Abstract: Techniques for detecting instances of external fraud by monitoring digital activities that are performed with accounts associated with an enterprise are disclosed. In one example, a threat detection platform determines the likelihood that an incoming email is indicative of external fraud based on the context and content of the incoming email. To understand the risk posed by an incoming email, the threat detection platform may seek to determine not only whether the sender normally communicates with the recipient, but also whether the topic is one normally discussed by the sender and recipient. In this way, the threat detection platform can establish whether the incoming email deviates from past emails exchanged between the sender and recipient.
    Type: Application
    Filed: March 15, 2023
    Publication date: July 13, 2023
    Inventors: Yu Zhou Lee, Lawrence Stockton Moore, Jeshua Alexis Bratman, Lei Xu, Sanjay Jeyakumar
  • Publication number: 20230208876
    Abstract: Selectively rewriting URLs is disclosed. An indication is received that a message has arrived at a user message box. A determination is made that the message includes a first link to a first resource. The first link is analyzed to determine whether the first link is classified as a non-rewrite link. In response to determining that the first link is not classified as a non-rewrite link, a first replacement link is generated for the first link.
    Type: Application
    Filed: December 21, 2022
    Publication date: June 29, 2023
    Inventors: Yea So Jung, Su Li Debbie Tan, Kai Jing Jiang, Fang Shuo Deng, Yu Zhou Lee, Rami F. Habal, Oz Wasserman, Sanjay Jeyakumar
  • Patent number: 11687648
    Abstract: Deriving and surfacing insights regarding security threats is disclosed. A plurality of features associated with a message is determined. A plurality of facet models is used to analyze the determined features. Based at least in part on the analysis, it is determined that the message poses a security threat. A prioritized set of information is determined to be provided as output that is representative of why the message was determined to pose a security threat. At least a portion of the prioritized set of information is provided as output.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: June 27, 2023
    Assignee: Abnormal Security Corporation
    Inventors: Yu Zhou Lee, Kai Jiang, Su Li Debbie Tan, Geng Sng, Cheng-Lin Yeh, Lawrence Stockton Moore, Sanny Xiao Lang Liao, Joey Esteban Cerquera, Jeshua Alexis Bratman, Sanjay Jeyakumar, Nishant Bhalchandra Karandikar
  • Patent number: 11683284
    Abstract: Techniques for identifying and processing graymail are disclosed. An electronic message store is accessed. A determination is made that a first message included in the electronic message store represents graymail, including by accessing a profile associated with an addressee of the first message. A remedial action is taken in response to determining that the first message represents graymail.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: June 20, 2023
    Assignee: Abnormal Security Corporation
    Inventors: Rami F. Habal, Kevin Lau, Sharan Dev Sankar, Yea So Jung, Dhruv Purushottam, Venkat Krishnamoorthi, Franklin X. Wang, Jeshua Alexis Bratman, Jocelyn Mikael Raphael Beauchesne, Abhijit Bagri, Sanjay Jeyakumar