Patents by Inventor Sanjay Jeyakumar
Sanjay Jeyakumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12255915Abstract: Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner.Type: GrantFiled: June 7, 2021Date of Patent: March 18, 2025Assignee: Abnormal Security CorporationInventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan James Reiser, Sanny Xiao Yang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
-
Patent number: 12231453Abstract: Techniques for producing records of digital activities that are performed with accounts associated with employees of enterprises are disclosed. Such techniques can be used to ensure that records are created for digital activities that are deemed unsafe and for digital activities that are deemed safe by a threat detection platform. At a high level, more comprehensively recording digital activities not only provides insight into the behavior of individual accounts, but also provides insight into the holistic behavior of employees across multiple accounts. These records may be stored in a searchable datastore to enable expedient and efficient review.Type: GrantFiled: August 16, 2022Date of Patent: February 18, 2025Assignee: Abnormal Security CorporationInventors: Jeremy Kao, Kai Jing Jiang, Sanjay Jeyakumar, Yea So Jung, Carlos Daniel Gasperi, Justin Anthony Young
-
Publication number: 20240356951Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.Type: ApplicationFiled: April 24, 2024Publication date: October 24, 2024Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
-
Publication number: 20240354680Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.Type: ApplicationFiled: April 24, 2024Publication date: October 24, 2024Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
-
Publication number: 20240356959Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.Type: ApplicationFiled: April 24, 2024Publication date: October 24, 2024Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
-
Publication number: 20240356938Abstract: Introduced here is a network-accessible platform (or simply “platform”) that is designed to monitor digital activities that are performed across different services to ascertain, in real time, threats to the security of an enterprise. In order to surface insights into the threats posed to an enterprise, the platform can apply machine learning models to data that is representative of digital activities performed on different services with respective accounts. Each model may be trained to understand what constitutes normal behavior for a corresponding employee with respect to a single service or multiple services. Not only can these models be autonomously trained for the employees of the enterprise, but they can also be autonomously applied to detect, characterize, and catalog those digital activities that are indicative of a threat.Type: ApplicationFiled: April 24, 2024Publication date: October 24, 2024Inventors: Sanjay Jeyakumar, Evan Reiser, Abhijit Bagri, Maritza Perez, Vineet Edupuganti, Yingkai Gao, Umut Gultepe, Cheng-Lin Yeh, Mark Philip, Tejas Khot, Thomas Dawes, Sanish Mahadik, Benjamin Snider, Cheng Li, Nirmal Balachundhar, Adithya Vellal, Lucas Sonnabend
-
Patent number: 12081522Abstract: Introduced here are threat detection platforms designed to discover possible instances of email account compromise in order to identify threats to an enterprise. In particular, a threat detection platform can examine the digital activities performed with the email accounts associated with employees of the enterprise to determine whether any email accounts are exhibiting abnormal behavior. Examples of digital activities include the reception of an incoming email, transmission of an outgoing email, creation of a mail filter, and occurrence of a sign-in event (also referred to as a “login event”). Thus, the threat detection platform can monitor the digital activities performed with a given email account to determine the likelihood that the given email account has been compromised.Type: GrantFiled: May 23, 2022Date of Patent: September 3, 2024Assignee: Abnormal Security CorporationInventors: Dmitry Chechik, Umut Gultepe, Raphael Kargon, Jeshua Alexis Bratman, Cheng-Lin Yeh, Sanny Xiao Lang Liao, Erin Elisabeth Edkins Ludert, Sanjay Jeyakumar, Hariank Sagar Muthakana
-
Publication number: 20240291834Abstract: Access to emails delivered to an employee of an enterprise is received. An incoming email addressed to the employee is acquired. A primary attribute is extracted from the incoming email by parsing at least one of: (1) content of the incoming email or (2) metadata associated with the incoming email. It is determined whether the incoming email deviates from past email activity, at least in part by determining, as a secondary attribute, a mismatch between a previous value for the primary attribute and a current value for the primary attribute, using a communication profile associated with the employee, and providing a measured deviation to at least one machine learning model.Type: ApplicationFiled: March 26, 2024Publication date: August 29, 2024Inventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan Reiser, Sanny Xiao Lang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
-
Publication number: 20240171596Abstract: A message addressed to a user is received. A first model is applied to the message to produce a first output indicative of whether the message is representative of a non-malicious message. The first model is trained using past messages that have been verified as non-malicious messages. It is determined, based on the first output, that the message is potentially a malicious message. Responsive to determining that the message is potentially a malicious email based on the first output, apply a second model to the message to produce a second output indicative of whether the message is representative of a given type of attack. The second model is one of a plurality of models. At least one model included in the plurality of models is associated with characterizing a goal of the malicious message. An action is performed with respect to the message based on the second output.Type: ApplicationFiled: September 26, 2023Publication date: May 23, 2024Inventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan Reiser, Sanny Xiao Lang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
-
Patent number: 11973772Abstract: Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner.Type: GrantFiled: February 22, 2022Date of Patent: April 30, 2024Assignee: Abnormal Security CorporationInventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan Reiser, Sanny Xiao Lang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
-
Patent number: 11943257Abstract: Selectively rewriting URLs is disclosed. An indication is received that a message has arrived at a user message box. A determination is made that the message includes a first link to a first resource. The first link is analyzed to determine whether the first link is classified as a non-rewrite link. In response to determining that the first link is not classified as a non-rewrite link, a first replacement link is generated for the first link.Type: GrantFiled: December 21, 2022Date of Patent: March 26, 2024Assignee: Abnormal Security CorporationInventors: Yea So Jung, Su Li Debbie Tan, Kai Jing Jiang, Fang Shuo Deng, Yu Zhou Lee, Rami F. Habal, Oz Wasserman, Sanjay Jeyakumar
-
Patent number: 11831661Abstract: A plurality of features associated with a message are determined. At least one feature included in the plurality of features is associated with a payload of the message. A determination is made that supplemental analysis should be performed on the message. The determination is based at least in part on performing behavioral analysis using at least some of the features included in the plurality of features. Supplemental analysis is performed.Type: GrantFiled: June 2, 2022Date of Patent: November 28, 2023Assignee: Abnormal Security CorporationInventors: Yu Zhou Lee, Micah J. Zirn, Umut Gultepe, Jeshua Alexis Bratman, Michael Douglas Kralka, Cheng-Lin Yeh, Dmitry Chechik, Sanjay Jeyakumar
-
Patent number: 11824870Abstract: Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner.Type: GrantFiled: November 4, 2019Date of Patent: November 21, 2023Assignee: Abnormal Security CorporationInventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan James Reiser, Sanny Xiao Yang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
-
Patent number: 11743294Abstract: Conventional email filtering services are not suitable for recognizing sophisticated malicious emails, and therefore may allow sophisticated malicious emails to reach inboxes by mistake. Introduced here are threat detection platforms designed to take an integrative approach to detecting security threats. For example, after receiving input indicative of an approval from an individual to access past email received by employees of an enterprise, a threat detection platform can download past emails to build a machine learning (ML) model that understands the norms of communication with internal contacts (e.g., other employees) and/or external contacts (e.g., vendors). By applying the ML model to incoming email, the threat detection platform can identify security threats in real time in a targeted manner.Type: GrantFiled: June 28, 2021Date of Patent: August 29, 2023Assignee: Abnormal Security CorporationInventors: Sanjay Jeyakumar, Jeshua Alexis Bratman, Dmitry Chechik, Abhijit Bagri, Evan James Reiser, Sanny Xiao Yang Liao, Yu Zhou Lee, Carlos Daniel Gasperi, Kevin Lau, Kai Jing Jiang, Su Li Debbie Tan, Jeremy Kao, Cheng-Lin Yeh
-
Patent number: 11706247Abstract: Techniques for detecting instances of external fraud by monitoring digital activities that are performed with accounts associated with an enterprise are disclosed. In one example, a threat detection platform determines the likelihood that an incoming email is indicative of external fraud based on the context and content of the incoming email. To understand the risk posed by an incoming email, the threat detection platform may seek to determine not only whether the sender normally communicates with the recipient, but also whether the topic is one normally discussed by the sender and recipient. In this way, the threat detection platform can establish whether the incoming email deviates from past emails exchanged between the sender and recipient.Type: GrantFiled: July 29, 2022Date of Patent: July 18, 2023Assignee: Abnormal Security CorporationInventors: Yu Zhou Lee, Lawrence Stockton Moore, Jeshua Alexis Bratman, Lei Xu, Sanjay Jeyakumar
-
Patent number: 11704406Abstract: Deriving and surfacing insights regarding security threats is disclosed. A plurality of features associated with a message is determined. A plurality of facet models is used to analyze the determined features. Based at least in part on the analysis, it is determined that the message poses a security threat. A prioritized set of information is determined to be provided as output that is representative of why the message was determined to pose a security threat. At least a portion of the prioritized set of information is provided as output.Type: GrantFiled: September 12, 2022Date of Patent: July 18, 2023Assignee: Abnormal Security CorporationInventors: Yu Zhou Lee, Kai Jiang, Su Li Debbie Tan, Geng Sng, Cheng-Lin Yeh, Lawrence Stockton Moore, Sanny Xiao Lang Liao, Joey Esteban Cerquera, Jeshua Alexis Bratman, Sanjay Jeyakumar, Nishant Bhalchandra Karandikar
-
Publication number: 20230224329Abstract: Techniques for detecting instances of external fraud by monitoring digital activities that are performed with accounts associated with an enterprise are disclosed. In one example, a threat detection platform determines the likelihood that an incoming email is indicative of external fraud based on the context and content of the incoming email. To understand the risk posed by an incoming email, the threat detection platform may seek to determine not only whether the sender normally communicates with the recipient, but also whether the topic is one normally discussed by the sender and recipient. In this way, the threat detection platform can establish whether the incoming email deviates from past emails exchanged between the sender and recipient.Type: ApplicationFiled: March 15, 2023Publication date: July 13, 2023Inventors: Yu Zhou Lee, Lawrence Stockton Moore, Jeshua Alexis Bratman, Lei Xu, Sanjay Jeyakumar
-
Publication number: 20230208876Abstract: Selectively rewriting URLs is disclosed. An indication is received that a message has arrived at a user message box. A determination is made that the message includes a first link to a first resource. The first link is analyzed to determine whether the first link is classified as a non-rewrite link. In response to determining that the first link is not classified as a non-rewrite link, a first replacement link is generated for the first link.Type: ApplicationFiled: December 21, 2022Publication date: June 29, 2023Inventors: Yea So Jung, Su Li Debbie Tan, Kai Jing Jiang, Fang Shuo Deng, Yu Zhou Lee, Rami F. Habal, Oz Wasserman, Sanjay Jeyakumar
-
Patent number: 11687648Abstract: Deriving and surfacing insights regarding security threats is disclosed. A plurality of features associated with a message is determined. A plurality of facet models is used to analyze the determined features. Based at least in part on the analysis, it is determined that the message poses a security threat. A prioritized set of information is determined to be provided as output that is representative of why the message was determined to pose a security threat. At least a portion of the prioritized set of information is provided as output.Type: GrantFiled: December 9, 2021Date of Patent: June 27, 2023Assignee: Abnormal Security CorporationInventors: Yu Zhou Lee, Kai Jiang, Su Li Debbie Tan, Geng Sng, Cheng-Lin Yeh, Lawrence Stockton Moore, Sanny Xiao Lang Liao, Joey Esteban Cerquera, Jeshua Alexis Bratman, Sanjay Jeyakumar, Nishant Bhalchandra Karandikar
-
Patent number: 11683284Abstract: Techniques for identifying and processing graymail are disclosed. An electronic message store is accessed. A determination is made that a first message included in the electronic message store represents graymail, including by accessing a profile associated with an addressee of the first message. A remedial action is taken in response to determining that the first message represents graymail.Type: GrantFiled: May 12, 2022Date of Patent: June 20, 2023Assignee: Abnormal Security CorporationInventors: Rami F. Habal, Kevin Lau, Sharan Dev Sankar, Yea So Jung, Dhruv Purushottam, Venkat Krishnamoorthi, Franklin X. Wang, Jeshua Alexis Bratman, Jocelyn Mikael Raphael Beauchesne, Abhijit Bagri, Sanjay Jeyakumar