Patents by Inventor Sanjay M. Joshi

Sanjay M. Joshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12238087
    Abstract: An electronic device includes at least one processor and at least one memory storing instructions executable by the at least one processor. The at least one processor operates to obtain a credential value string indicating a sequence of credential values entered by a user through a user interface as a part of a credential key. The at least one processor operates to obtain an input order string indicating an order in which individual ones of the sequence of credential values were separately entered by the user through the user interface as another part of the credential key. The at least one processor operates to validate the credential key based on the credential value string and based on the input order string.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: February 25, 2025
    Assignee: Globus Medical, Inc.
    Inventor: Sanjay M. Joshi
  • Patent number: 12184636
    Abstract: An electronic device includes at least one processor and at least one memory storing instructions executable by the at least one processor. The at least one processor operates to obtain a credential value string indicating a sequence of credential values entered by a user through a user interface as a part of a credential key. The at least one processor operates to obtain an input order string indicating an order in which individual ones of the sequence of credential values were separately entered by the user through the user interface as another part of the credential key. The at least one processor operates to validate the credential key based on the credential value string and based on the input order string.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: December 31, 2024
    Assignee: Globus Medical, Inc.
    Inventor: Sanjay M. Joshi
  • Publication number: 20240407869
    Abstract: Devices, systems, and methods for a robot-assisted surgery. Navigable instrumentation, which are capable of being navigated by a surgeon using the surgical robot system, and navigation software allow for the navigated placement of interbody fusion devices or other surgical devices. The interbody implant navigation may involve navigation of access instruments (e.g., dilators, retractors, ports), disc preparation instruments, trials, and inserters.
    Type: Application
    Filed: August 22, 2024
    Publication date: December 12, 2024
    Inventors: Paden Troxell, Kyle Van Leer, Stephen Cicchini, Neil R. Crawford, Andrew Berkowitz, Norbert Johnson, Jeffrey Forsyth, Ryan Decker, Eric Studley, James Cascarano, Dana Wisniewski, Hayden Cameron, Mir Hussain, Sanjay M. Joshi
  • Patent number: 12076097
    Abstract: Devices, systems, and methods for a robot-assisted surgery. Navigable instrumentation, which are capable of being navigated by a surgeon using the surgical robot system, and navigation software allow for the navigated placement of interbody fusion devices or other surgical devices. The interbody implant navigation may involve navigation of access instruments (e.g., dilators, retractors, ports), disc preparation instruments, trials, and inserters.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: September 3, 2024
    Assignee: Globus Medical, Inc.
    Inventors: Paden Troxell, Kyle Van Leer, Stephen Cicchini, Neil R. Crawford, Andrew Berkowitz, Norbert Johnson, Jeffrey Forsyth, Ryan Decker, Eric Studley, James Cascarano, Dana Wisniewski, Hayden Cameron, Mir Hussain, Sanjay M. Joshi
  • Publication number: 20240216080
    Abstract: Devices, systems, and methods for providing a surveillance marker configured to detecting movement of a dynamic reference base attached to a patient a robot-assisted surgical procedure are provided. The surveillance marker and the dynamic reference base are connected to a bony structure independent of each other.
    Type: Application
    Filed: March 19, 2024
    Publication date: July 4, 2024
    Inventors: Jeffrey Forsyth, Sanjay M. Joshi, Neil R. Crawford
  • Patent number: 11974822
    Abstract: Devices, systems, and methods for providing a surveillance marker configured to detecting movement of a dynamic reference base attached to a patient a robot-assisted surgical procedure are provided. The surveillance marker and the dynamic reference base are connected to a bony structure independent of each other.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: May 7, 2024
    Assignee: Globus Medical Inc.
    Inventors: Jeffrey Forsyth, Sanjay M. Joshi, Neil R. Crawford
  • Patent number: 11857266
    Abstract: Devices, systems, and methods for providing a surveillance marker configured to detecting movement of a dynamic reference base attached to a patient a robot-assisted surgical procedure are provided. The surveillance marker and the dynamic reference base are connected to a bony structure independent of each other.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 2, 2024
    Assignee: Globus Medical, Inc.
    Inventors: Jeffrey Forsyth, Sanjay M. Joshi, Neil R. Crawford
  • Publication number: 20230368418
    Abstract: A system configured to perform an accuracy check of a tracked instrument can include a processing circuitry and memory coupled to the processing circuitry. The memory can include instructions to cause the system to perform operations. The operations can include determining a virtual position of a display device. The operations can further include determining a virtual position of the tracked instrument. The operations can further include determining a point of contact on the display device between the tracked instrument and the display device. The operations can further include determining an expected point of contact on the display device between the tracked instrument and the display device based on the virtual position of the display device and the virtual position of the tracked instrument. The operations can further include determining whether the tracked instrument is accurate based on a difference between the point of contact and the expected point of contact.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Inventor: Sanjay M. Joshi
  • Publication number: 20230368330
    Abstract: A system can be configured to generate a medical image. The system can include processing circuitry and memory coupled to the processing circuitry. The memory can include instructions stored therein that are executable by the processing circuitry to cause the system to perform operations. The operations can include obtaining a first image of an anatomical object. The operations can further include extracting first information associated with the anatomical object from the first image. The operations can further include obtaining a second image of the anatomical object. The operations can further include extracting second information associated with the anatomical object from the second image. The operations can further include generating the medical image based on the first information, the second information, and predetermined information. The predetermined information can be associated with images of anatomical objects of a type that is a type of the anatomical object.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Inventors: Sanjay M. Joshi, Arjang Noushin, Neil Crawford
  • Publication number: 20230363820
    Abstract: A system can be configured to generate a medical image. The system can include processing circuitry and memory coupled to the processing circuitry. The memory can include instructions stored therein that are executable by the processing circuitry to cause the system to perform operations. The operations can include obtaining a first image of an anatomical object. The operations can further include extracting first information associated with the anatomical object from the first image. The operations can further include obtaining a second image of the anatomical object. The operations can further include extracting second information associated with the anatomical object from the second image. The operations can further include generating the medical image based on the first information, the second information, and predetermined information. The predetermined information can be associated with images of anatomical objects of a type that is a type of the anatomical object.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Inventors: Sanjay M. Joshi, Arjang Noushin, Neil Crawford
  • Publication number: 20230363827
    Abstract: A system configured to perform an accuracy check of a tracked instrument can include a processing circuitry and memory coupled to the processing circuitry. The memory can include instructions to cause the system to perform operations. The operations can include determining a virtual position of a display device. The operations can further include determining a virtual position of the tracked instrument. The operations can further include determining a point of contact on the display device between the tracked instrument and the display device. The operations can further include determining an expected point of contact on the display device between the tracked instrument and the display device based on the virtual position of the display device and the virtual position of the tracked instrument. The operations can further include determining whether the tracked instrument is accurate based on a difference between the point of contact and the expected point of contact.
    Type: Application
    Filed: May 10, 2022
    Publication date: November 16, 2023
    Inventor: Sanjay M. Joshi
  • Publication number: 20230277084
    Abstract: A method and system for determining an extent of matter removed from a targeted anatomical structure are disclosed. The method includes acquiring an initial representation of a targeted anatomical structure and then removing matter from the targeted anatomical structure. An instrument is then navigated within the targeted anatomical structure. The instrument includes a tracking array, and a relative position of the instrument within the targeted anatomical structure is determined by the tracking array. The method includes recording the relative position of the instrument within the targeted anatomical structure to determine a final representation of the targeted anatomical structure. Finally, the method includes determining an extent of matter removed from the targeted anatomical structure by comparing the initial representation of the targeted anatomical structure with the final representation of the targeted anatomical structure.
    Type: Application
    Filed: March 1, 2023
    Publication date: September 7, 2023
    Inventors: Norbert Johnson, Neil Crawford, Weston Healy, Sanjay M. Joshi, Thomas Calloway, Joshua Cige
  • Publication number: 20230263581
    Abstract: Devices, systems, and methods for providing a surveillance marker configured to detecting movement of a dynamic reference base attached to a patient a robot-assisted surgical procedure are provided. The surveillance marker and the dynamic reference base are connected to a bony structure independent of each other.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Jeffrey Forsyth, Sanjay M. Joshi, Neil R. Crawford
  • Publication number: 20230123621
    Abstract: A computer platform is provided for computer assisted navigation during surgery. The computer platform includes at least one processor that is operative to transform pre-operative images of a patient obtained from a first imaging modality to an estimate of the pre-operative images of the patient in a second imaging modality that is different than the first imaging modality. The at least one processor is further operative to register the estimate of the pre-operative images of the patient in the second imaging modality to intra-operative navigable images or data of the patient.
    Type: Application
    Filed: October 19, 2022
    Publication date: April 20, 2023
    Inventors: Sanjay M. Joshi, Neil Crawford, Arjang Noushin, Ilja Manakov, Raphael Prevost, Matthias Wieczorek
  • Patent number: 11628023
    Abstract: Devices, systems, and methods for a robot-assisted surgery. Navigable instrumentation, which are capable of being navigated by a surgeon using the surgical robot system, and navigation software allow for the navigated placement of interbody fusion devices or other surgical devices. The interbody implant navigation may involve navigation of access instruments (e.g., dilators, retractors, ports), disc preparation instruments, trials, and inserters.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: April 18, 2023
    Assignee: Globus Medical, Inc.
    Inventors: Paden Troxell, Kyle Van Leer, Stephen Cicchini, Neil R. Crawford, Andrew Berkowitz, Norbert Johnson, Jeffrey Forsyth, Ryan Decker, Eric Studley, James Cascarano, Dana Wisniewski, Hayden Cameron, Mir Hussain, Sanjay M. Joshi
  • Publication number: 20230107843
    Abstract: An electronic device includes at least one processor and at least one memory storing instructions executable by the at least one processor. The at least one processor operates to obtain a credential value string indicating a sequence of credential values entered by a user through a user interface as a part of a credential key. The at least one processor operates to obtain an input order string indicating an order in which individual ones of the sequence of credential values were separately entered by the user through the user interface as another part of the credential key. The at least one processor operates to validate the credential key based on the credential value string and based on the input order string.
    Type: Application
    Filed: October 4, 2021
    Publication date: April 6, 2023
    Inventor: Sanjay M. Joshi
  • Publication number: 20230109497
    Abstract: An electronic device includes at least one processor and at least one memory storing instructions executable by the at least one processor. The at least one processor operates to obtain a credential value string indicating a sequence of credential values entered by a user through a user interface as a part of a credential key. The at least one processor operates to obtain an input order string indicating an order in which individual ones of the sequence of credential values were separately entered by the user through the user interface as another part of the credential key. The at least one processor operates to validate the credential key based on the credential value string and based on the input order string.
    Type: Application
    Filed: April 26, 2022
    Publication date: April 6, 2023
    Inventor: Sanjay M. Joshi
  • Publication number: 20230108228
    Abstract: An electronic device includes at least one processor and at least one memory storing instructions executable by the at least one processor. The at least one processor operates to obtain a credential value string indicating a sequence of credential values entered by a user through a user interface as a part of a credential key. The at least one processor operates to obtain an input order string indicating an order in which individual ones of the sequence of credential values were separately entered by the user through the user interface as another part of the credential key. The at least one processor operates to validate the credential key based on the credential value string and based on the input order string.
    Type: Application
    Filed: October 4, 2021
    Publication date: April 6, 2023
    Inventor: Sanjay M. Joshi
  • Publication number: 20220409308
    Abstract: A medical robot system, including a robot coupled to an end effector element with the robot configured for controlled movement and positioning. The robot system includes a robot base having a display, a robot arm coupled to the robot base, wherein movement of the robot arm is electronically controlled by the robot base. The end-effector is coupled to the robot arm, containing one or more end-effector tracking markers. The system also includes a plurality of dynamic reference bases (DRB) attached to multiple patient fixture instruments, wherein the plurality of dynamic reference bases include one or more tracking markers indicating a position of the patient fixture instrument in a navigational space. The system also includes a first camera system and a second camera system, the first and second camera systems being able to detect a plurality of tracking markers.
    Type: Application
    Filed: June 21, 2022
    Publication date: December 29, 2022
    Inventors: Sanjay M. Joshi, Neil Crawford, Norbert Johnson, Jeffrey Forsyth
  • Publication number: 20220378388
    Abstract: A fixture for a fluoroscopic x-ray imaging system is discussed, wherein the fluoroscopic imaging system includes a C-arm, an x-ray source at a first end of the C-arm, and an x-ray detector at a second end of the C-arm. The fixture includes a processor and memory coupled with the processor. The memory includes instructions that are executable by the processor so that the processor is configured to detect an x-ray emission from the x-ray source toward the x-ray detector, determine an offset of the x-ray source relative to the x-ray detector responsive to detecting the x-ray emission, and provide an indication of the offset of the x-ray source to a medical navigation system. Related methods and robotic systems are also discussed.
    Type: Application
    Filed: December 10, 2021
    Publication date: December 1, 2022
    Inventors: Neil R. Crawford, Norbert Johnson, Sanjay M. Joshi