Patents by Inventor Sanjay Rajaram

Sanjay Rajaram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11728191
    Abstract: A system includes a substrate support on which to receive a transparent substrate, a non-contact sensor adapted to detect and image a dot pattern etched on a front surface of the transparent substrate, and a processing device attached to the non-contact sensor. The processing device may determine, using imaging data from the non-contact sensor, an orientation of a right-angled edge of the dot pattern. The processing device may determine, based on the orientation of the right-angled edge, whether a front surface of the transparent substrate is facing up or facing down. The processing device may also direct a robot to transfer the transparent substrate to a processing chamber dependent on whether the front surface of the transparent substrate is facing up or facing down.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: August 15, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Michelle Alejandra Wong, Sanjay Rajaram
  • Publication number: 20220392789
    Abstract: An electronic device processing system includes a factory interface (FI), substrate carrier(s), a humidity sensor, an oxygen sensor, and an environmental control system coupled to the FI. A processor of the environmental control system is to cause inert gas to be provided to an FI chamber and inert gas exhausted from the FI chamber to be circulated back into the FI chamber. The processor is also to identify conditions to be satisfied before opening a door of the substrate carriers. The processor is to control the humidity level based on detection by the humidity sensor or the oxygen level based on detection by the oxygen sensor. If the one or more conditions are satisfied, the processor is to open the carrier door to enable passing of substrates between the FI chamber and the substrate carriers.
    Type: Application
    Filed: August 19, 2022
    Publication date: December 8, 2022
    Inventors: Sushant S. Koshti, Dean C. Hruzek, Ayan Majumdar, John C. Menk, Helder T. Lee, Sangram Patil, Sanjay Rajaram, Douglas Baumgarten, Nir Merry
  • Patent number: 11450539
    Abstract: Electronic device processing systems including environmental control of the factory interface are described. One electronic device processing system has a factory interface having a factory interface chamber, a load lock apparatus coupled to the factory interface, one or more substrate carriers coupled to the factory interface, and an environmental control system coupled to the factory interface and operational to monitor or control one of: relative humidity, temperature, an amount of oxygen, or an amount of inert gas within the factory interface chamber. In another aspect, purge of a carrier purge chamber within the factory interface chamber is provided. Methods for processing substrates are described, as are numerous other aspects.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: September 20, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Sushant S. Koshti, Dean C. Hruzek, Ayan Majumdar, John C. Menk, Helder T. Lee, Sangram Patil, Sanjay Rajaram, Douglas B. Baumgarten, Nir Merry
  • Patent number: 11282724
    Abstract: A factory interface for an electronic device processing system includes a factory interface chamber, an inert gas supply conduit, an exhaust conduit and an inert gas recirculation system. The inert gas supply conduit supplies an inert gas into the factory interface chamber. The exhaust conduit exhausts the inert gas from the factory interface chamber. The inert gas recirculation system recirculates the inert gas exhausted from the factory interface chamber back into the factory interface chamber.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: March 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Sushant S. Koshti, Dean C. Hruzek, Ayan Majumdar, John C. Menk, Helder T. Lee, Sangram Patil, Sanjay Rajaram, Douglas Baumgarten, Nir Merry
  • Publication number: 20210351050
    Abstract: A system includes a substrate support on which to receive a transparent substrate, a non-contact sensor adapted to detect and image a dot pattern etched on a front surface of the transparent substrate, and a processing device attached to the non-contact sensor. The processing device may determine, using imaging data from the non-contact sensor, an orientation of a right-angled edge of the dot pattern. The processing device may determine, based on the orientation of the right-angled edge, whether a front surface of the transparent substrate is facing up or facing down. The processing device may also direct a robot to transfer the transparent substrate to a processing chamber dependent on whether the front surface of the transparent substrate is facing up or facing down.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 11, 2021
    Inventors: Michelle Alejandra Wong, Sanjay Rajaram
  • Publication number: 20190362997
    Abstract: A factory interface for an electronic device processing system includes a factory interface chamber, an inert gas supply conduit, an exhaust conduit and an inert gas recirculation system. The inert gas supply conduit supplies an inert gas into the factory interface chamber. The exhaust conduit exhausts the inert gas from the factory interface chamber. The inert gas recirculation system recirculates the inert gas exhausted from the factory interface chamber back into the factory interface chamber.
    Type: Application
    Filed: August 7, 2019
    Publication date: November 28, 2019
    Inventors: Sushant S. Koshti, Dean C. Hruzek, Ayan Majumdar, John C. Menk, Helder T. Lee, Sangram Patil, Sanjay Rajaram, Douglas Baumgarten, Nir Merry
  • Patent number: 10192765
    Abstract: Electronic device processing systems including environmental control of the factory interface are described. One electronic device processing system has a factory interface having a factory interface chamber, a load lock apparatus coupled to the factory interface, one or more substrate carriers coupled to the factory interface, and an environmental control system coupled to the factory interface and operational to monitor or control one of: relative humidity, temperature, an amount of oxygen, or an amount of inert gas within the factory interface chamber. In another aspect, purge of a carrier purge chamber within the factory interface chamber is provided. Methods for processing substrates are described, as are numerous other aspects.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: January 29, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Sushant S. Koshti, Dean C. Hruzek, Ayan Majumdar, John C. Menk, Helder T. Lee, Sangram Patil, Sanjay Rajaram, Douglas Baumgarten, Nir Merry
  • Publication number: 20180366355
    Abstract: Electronic device processing systems including environmental control of the factory interface are described. One electronic device processing system has a factory interface having a factory interface chamber, a load lock apparatus coupled to the factory interface, one or more substrate carriers coupled to the factory interface, and an environmental control system coupled to the factory interface and operational to monitor or control one of: relative humidity, temperature, an amount of oxygen, or an amount of inert gas within the factory interface chamber. In another aspect, purge of a carrier purge chamber within the factory interface chamber is provided. Methods for processing substrates are described, as are numerous other aspects.
    Type: Application
    Filed: August 24, 2018
    Publication date: December 20, 2018
    Inventors: Sushant S. Koshti, Dean C. Hruzek, Ayan Majumdar, John C. Menk, Helder T. Lee, Sangram Patil, Sanjay Rajaram, Douglas B. Baumgarten, Nir Merry
  • Publication number: 20150045961
    Abstract: Electronic device processing systems including environmental control of the factory interface are described. One electronic device processing system has a factory interface having a factory interface chamber, a load lock apparatus coupled to the factory interface, one or more substrate carriers coupled to the factory interface, and an environmental control system coupled to the factory interface and operational to monitor or control one of: relative humidity, temperature, an amount of oxygen, or an amount of inert gas within the factory interface chamber. In another aspect, purge of a carrier purge chamber within the factory interface chamber is provided. Methods for processing substrates are described, as are numerous other aspects.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 12, 2015
    Inventors: Sushant S. Koshti, Dean C. Hruzek, Ayan Majumdar, John C. Menk, Helder T. Lee, Sangram Patil, Sanjay Rajaram, Douglas Baumgarten
  • Patent number: 8460057
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: June 11, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Bret W. Adams, Sanjay Rajaram, David A. Chan, Manoocher Birang
  • Publication number: 20110195528
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Inventors: Boguslaw A. Swedek, Bret W. Adams, Sanjay Rajaram, David A. Chan, Manoocher Birang
  • Patent number: 7927182
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 19, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Bret W. Adams, Sanjay Rajaram, David A. Chan, Manoocher Birang
  • Publication number: 20100062684
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 11, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Boguslaw A. Swedek, Bret W. Adams, Sanjay Rajaram, David A. Chan, Manoocher Birang
  • Patent number: 7585202
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: September 8, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Bret W. Adams, Sanjay Rajaram, David A. Chan, Manoocher Birang
  • Publication number: 20080064300
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Application
    Filed: October 24, 2007
    Publication date: March 13, 2008
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Boguslaw Swedek, Bret Adams, Sanjay Rajaram, David Chan, Manoocher Birang
  • Patent number: 7294039
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: November 13, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Bret W. Adams, Sanjay Rajaram, David A. Chan, Manoocher Birang
  • Publication number: 20060286904
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Application
    Filed: August 24, 2006
    Publication date: December 21, 2006
    Applicant: Applied Materials, Inc.
    Inventors: Boguslaw Swedek, Bret Adams, Sanjay Rajaram, David Chan, Manoocher Birang
  • Patent number: 7101251
    Abstract: A computer program product for process control in chemical mechanical polishing is described. The product includes instructions to cause a processor to receive a measurement of an initial pre-polishing thickness of a layer of a substrate from a metrology station, determine a value for a parameter of an endpoint algorithm from the initial thickness of the substrate, receive a monitoring signal generated from monitoring in-situ polishing of the substrate, process the monitoring signal to detect a signal feature indicating a final or intermediate endpoint and send instructions to stop polishing when an endpoint criterion is detected using the endpoint algorithm with the determined value for the parameter.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: September 5, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Bret W. Adams, Sanjay Rajaram, David A. Chan, Manoocher Birang
  • Publication number: 20050245170
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Application
    Filed: June 23, 2005
    Publication date: November 3, 2005
    Inventors: Boguslaw Swedek, Bret Adams, Sanjay Rajaram, David Chan, Manoocher Birang
  • Patent number: 6939198
    Abstract: A computer-implemented method for process control in chemical mechanical polishing in which an initial pre-polishing thickness of a substrate is measured at a metrology station, a parameter of an endpoint algorithm is determined from the initial thickness of the substrate, a substrates is polished at a polishing station, and polishing stops when an endpoint criterion is detected using the endpoint algorithm.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: September 6, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Boguslaw A. Swedek, Bret W. Adams, Sanjay Rajaram, David A. Chan, Manoocher Birang