Patents by Inventor Sanjib Biswas

Sanjib Biswas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969976
    Abstract: Embodiments of the present disclosure are directed to multilayer films. Embodiments of the multilayer films may include a first layer comprising a first polyolefin, a second layer comprising a second polyolefin, a third layer comprising a third polyolefin, fourth layer comprising a fourth polyolefin, and a fifth layer comprising a fifth polyolefin. The second layer may be positioned between the first layer and the third layer; the third layer may be positioned between the second layer and the fourth layer; and the fourth layer may be positioned between the third layer and the fifth layer. Two or more of the first polyolefin, second polyolefin, third polyolefin, and fourth polyolefin may be the same or different. The third polyolefin may be a polyethylene composition having a density of 0.924 g/cm3 to 0.936 g/cm3 and a melt index (I2) of 0.25 g/10 minutes to 2.0 g/10 minutes.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: April 30, 2024
    Assignees: Dow Global Technologies LLC, Dow Quimica De Colombia S.A.
    Inventors: Jorge Mario Rodriguez Camelo, Marlos Guintini de Oliveira, Nicolas Cardoso Mazzola, Sanjib Biswas, Joshua B. Gaubert, Douglas S. Ginger, Mridula Kapur, Didem Oner-Deliormanli, Mehmet Demirors
  • Publication number: 20230407065
    Abstract: Embodiments of a polyethylene composition are provided, which may include a first polyethylene fraction comprising at least one peak in a temperature range of from 40 C to 75 C in an elution profile via improved comonomer composition distribution (iCCD) analysis method, where a first polyethylene area fraction is an area in the elution profile from 40 C to 75 C, and where the first polyethylene fraction area comprises from 45% to 65% of the total area of the elution profile; and a second polyethylene fraction comprising at least one peak in a temperature range of from 85 C to 110 C in the elution profile, where a second polyethylene area fraction is an area in the elution profile from 85 C to 110 C, and where the second polyethylene fraction area comprises from 15% to 35% of the total area of the elution profile, wherein the polyethylene composition has a density of 0.905 g/cm3 to 0.918 g/cm3, a melt index (I2) of 0.7 g/10 minutes to 3.
    Type: Application
    Filed: December 9, 2021
    Publication date: December 21, 2023
    Inventors: Sanjib Biswas, Jacquelyn A. Degroot, Mehmet Demirors, Erica Spiekermann, John A. Naumovitz, Douglas S. Ginger, Dibyaranjan Mekap
  • Publication number: 20230312787
    Abstract: Polyethylene compositions are disclosed that may have a density of 0.910 g/cm3 to 0.924 g/cm3 and a melt index (I2) In of 0.1 g/10 minutes to 0.5 g/10 minutes and include a first polyethylene fraction area in the temperature range from 45° C. to 80° C. of an elution profile via improved comonomer composition distribution (iCCD) analysis method; a second polyethylene fraction area in the temperature range from 80° C. to 95° C. of the elution profile, and a third polyethylene fraction area in the temperature range from 95° C. to 110° C. of the elution profile. The second polyethylene fraction area may include at least 5% of the total area of the elution profile. The third polyethylene fraction area may include at least 25% of the total area of the elution profile. A ratio of the first polyethylene fraction area to the second polyethylene fraction area may be from 6 to 15.
    Type: Application
    Filed: February 5, 2021
    Publication date: October 5, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Peter Hermann Roland Sandkuehler, Sanjib Biswas, David T. Gillespie, Mehmet Demirors, Michael J. Zogg, Jr.
  • Patent number: 11746195
    Abstract: The present disclosure provides a process including providing a polyolefin aqueous dispersion having (50) to (90) wt % solids content of dispersion, the polyolefin aqueous dispersion containing solid particles containing a polyolefin including an ethylene-based polymer having a melting temperature from greater than (115)° C. to (140)° C., polyolefin wax, acrylic dispersant; and an aqueous phase including excess acrylic dispersant; adding diluting water to form a diluted polyolefin aqueous dispersion having (5) to less than (50) wt % solids content; collecting the solid particles; washing the solid particles with a washing agent to remove the excess acrylic dispersant; and removing the washing agent to form a powder having a mean volume average particle size from (10) to (300) ?m, a sphericity from (0.92) to (1.0), a particle size distribution from (1) to less than (2), a particle density from (98)% to (100)%, and a flow rate in a large funnel from (1) to (5) seconds.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: September 5, 2023
    Inventors: Craig F. Gorin, Sanjib Biswas, Yi Fan, Thomas L. Tomczak, Daniel L. Dermody, Harpreet Singh
  • Publication number: 20230235104
    Abstract: Embodiments of polyethylene compositions and articles comprising polyethylene compositions are disclosed. The polyethylene compositions may include a first polyethylene fraction area defined by an area in the elution profile in a temperature range of 70° C. to 97° C. via improved comonomer composition distribution (iCCD) analysis method; a first peak in the temperature range of 70° C. to 97° C. in the elution profile; a second polyethylene fraction area defined by an area in the elution profile in a temperature range of 97° C. to 110° C.; and a second peak in the temperature range of 97° C. to 110° C. The polyethylene composition may have a density of 0.935 g/cm3 to 0.955 g/cm3 and a melt index (I2) of 1.0 g/10 minutes to 10.0 g/10 minutes. A ratio of the first polyethylene fraction area to the second polyethylene fraction area may be less than 2.0.
    Type: Application
    Filed: February 5, 2021
    Publication date: July 27, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Elva L. Lugo, Sanjib Biswas, Russell Cooper, Rajen Patel, Peter S. Martin, Stephanie M. Whited
  • Publication number: 20230118316
    Abstract: The present invention relates to oriented, multilayer polyethylene films. In one aspect, a biaxially oriented, multilayer polyethylene film comprises at least one layer comprising: (1) a polyethylene-based composition that comprises: (a) at least 97% by weight, based on the total weight of the polyethylene-based composition, of a polyethylene composition comprising: (i) from 25 to 37 percent by weight of a first polyethylene fraction having a density in the range of 0.935 to 0.947 g/cm3 and a melt index (I2) of less than 0.1 g/10 minutes; and (ii) from 63 to 75 percent by weight of a second polyethylene fraction; wherein the polyethylene composition has less than 0.10 branches per 1,000 carbon atoms when measured using 13C NMR, wherein the density of the polyethylene-based composition is at least 0.965 g/cm3, and wherein the melt index (I2) of the polyethylene-based composition is 0.5 to 10 g/10 minutes.
    Type: Application
    Filed: March 25, 2021
    Publication date: April 20, 2023
    Inventors: Jian Wang, Karlheinz Hausmann, Sanjib Biswas, Brayden E. Glad, Douglas S. Ginger, Justice Alaboson, Ronald Wevers
  • Patent number: 11609956
    Abstract: Techniques for annotating electronic content items include receiving over a communication network a first request to associate a first tag from among a plurality different of tags with first electronic content, wherein each tag from among the plurality of tags is: configured to label electronic content, and associated with a respective task from among a plurality of tasks; recording, in response to receiving the first request, a first association between the first electronic content and the first tag; and transmitting over the communication network to a first recipient client: the first electronic content, and an instruction to the first recipient client to cause the first recipient client to execute, in response to receiving the first electronic content, the respective task associated with the first tag on the first electronic content.
    Type: Grant
    Filed: July 5, 2021
    Date of Patent: March 21, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Mitali Jain, Praveen Upadhyay, Mahesh Sridharan, Rajiv Kumar, Sanjib Biswas, Arun Rajappa, Sunny Mitra, Aloka Sanjib Kumar Mitra
  • Publication number: 20230072649
    Abstract: Embodiments of a polyethylene composition are provided, which may include a first polyethylene fraction comprising at least one peak in a temperature range of from 35° C. to 70° C. in an elution profile via improved comonomer composition distribution (iCCD) analysis method, where a first polyethylene area fraction is an area in the elution profile from 35° C. to 70° C., and where the first polyethylene fraction area comprises from 25% to 65% of the total area of the elution profile; and a second polyethylene fraction comprising at least one peak in a temperature range of from 85° C. to 120° C. in the elution profile, where a second polyethylene area fraction is an area in the elution profile from 85° C. to 120° C., and where the second polyethylene fraction area comprises at least 20% of the total area of the elution profile.
    Type: Application
    Filed: December 21, 2020
    Publication date: March 9, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Sanjib Biswas, Rahul Sharma, Jacquelyn A. DeGroot, Erica Spiekermann, Douglas S. Ginger, Jian Wang, Mehmet Demirors, David T. Gillespie, Hien Q. Do, Philip P. Fontaine
  • Patent number: 11492468
    Abstract: According to at least one embodiment of the present disclosure, polyethylene formulations and modified polyethylene compositions are provided. Embodiments of the polyethylene formulation may include a free radical generator; and a multimodal polyethylene composition. The multimodal polyethylene composition may include a peak in a temperature range of 95° C. to 120° C. in the elution profile via improved comonomer composition distribution (iCCD), wherein a polyethylene fraction area is an area in the elution profile beneath the peak of the polyethylene fraction between 95° C. and 120° C., and wherein the polyethylene fraction area comprises at least 20% of the total area of the elution profile and a molecular weight (Mw) of less than 80,000 g/mol in the temperature range of from 95° C. to 120° C. on an elution profile via iCCD. The modified polyethylene composition may be the reaction product of the free radical generator and the multimodal polyethylene composition.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: November 8, 2022
    Assignee: Dow Technologies LLC
    Inventors: Sanjib Biswas, Alexander Williamson, Jorge Caminero Gomes, Carol Tsai
  • Publication number: 20220305763
    Abstract: Embodiments of multilayer films are disclosed comprising a first layer comprising polyethylene, a second layer comprising a first medium density polyethylene; a barrier layer; a third layer comprising a second medium density polyethylene; and a fourth layer comprising polyethylene. The second layer may be positioned between the first layer and the barrier layer. The barrier layer may be positioned between the second layer and the third layer.
    Type: Application
    Filed: August 4, 2020
    Publication date: September 29, 2022
    Inventors: Georgia Natacha Eftalie Bitinis, Albert Carbonell, Peter Hermann Roland Sandkuehier, Sanjib Biswas, Mehmet Demirors, Jashua B. Gaubert, Mridula Kapur, Didem Oner-Deliormanli
  • Publication number: 20220288906
    Abstract: Embodiments of the present disclosure are directed to multilayer films. Embodiments of the multilayer films may include a first layer comprising a polyethylene composition having a density of 0.924 g/cm3 to 0.936 g/cm3 and a melt index (I2) of 0.25 g/10 minutes to 2.0 g/10 minutes, a second layer comprising a first polyolefin, a third layer comprising a second polyolefin. The first layer may be positioned between the second layer and the third layer. The first polyolefin and the second polyolefin may be the same or different.
    Type: Application
    Filed: August 4, 2020
    Publication date: September 15, 2022
    Inventors: Justice Alaboson, Sanjib Biswas, Joshua B. Gaubert, Douglas S. Ginger, Vivek Kalihari, Mridula Kapur, Lori L. Kardos, Nicolas Cardoso Mazzola, Francis O. Olajide, JR., Didem Oner-Dellormanli, Jose Eduardo Ruiz
  • Publication number: 20220288899
    Abstract: Embodiments of the present disclosure are directed to multilayer films. Embodiments of the multilayer films may include a first layer comprising a first polyolefin, a second layer comprising a second polyolefin, a third layer comprising a third polyolefin, fourth layer comprising a fourth polyolefin, and a fifth layer comprising a fifth polyolefin. The second layer may be positioned between the first layer and the third layer; the third layer may be positioned between the second layer and the fourth layer; and the fourth layer may be positioned between the third layer and the fifth layer. Two or more of the first polyolefin, second polyolefin, third polyolefin, and fourth polyolefin may be the same or different. The third polyolefin may be a polyethylene composition having a density of 0.924 g/cm3 to 0.936 g/cm3 and a melt index (I2) of 0.25 g/10 minutes to 2.0 g/10 minutes.
    Type: Application
    Filed: August 4, 2020
    Publication date: September 15, 2022
    Applicants: Dow Global Technologies LLC, Dow Quimica de Colombia S.A.
    Inventors: Jorge Mario Rodriguez Camelo, Marlos Guintini de Oliveira, Nicolas Cardoso Mazzola, Sanjib Biswas, Joshua B. Gaubert, Douglas S. Ginger, Mridula Kapur, Didem Oner-Deliormanli, Mehmet Demirors
  • Publication number: 20220275181
    Abstract: According to one or more embodiments, a polyethylene composition that is suitable for packaging applications may include a first polyethylene fraction and a second polyethylene fraction. The first polyethylene fraction may have a single peak in a temperature range of 45 C to 87 C in an elution profile via the improved comonomer composition distribution (iCCD) analysis method. The second polyethylene fraction may have a single peak in a temperature range of 95° C. to 120° C. in the elution profile via iCCD analysis. Additional embodiments disclosed herein include articles and films comprising the polyethylene compositions described herein.
    Type: Application
    Filed: August 4, 2020
    Publication date: September 1, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Sanjib Biswas, Douglas S. Ginger, Mehmet Demirors, Joshua B. Gaubert, Mridula Kapur, Didem Oner-Deliormanli
  • Publication number: 20220266574
    Abstract: The present disclosure provides for a heat-shrinkable, biaxially stretched, multilayer thermoplastic film that includes at least a puncture resistant layer. The puncture resistant layer is formed with a polyethylene based plastomer having a density of 0.890 g/cm3to 0.910 g/cm3 as measured in accordance with ASTM D-792, and a melt index (MI) as measured by ASTM D-1238 at 190° C./2.16 kg from 0.20 g/10 minutes to 1.5 g/10 minutes. The polyethylene based plastomer has a log M25% of an upper 25% of a GPC quadrant having a value of 5.1 to 5.7, an intermediate molecular weight distribution (Mw/Mn) of 2.5 to 3, a Mz/Mw value of 2 to 2.5, a Comonomer Distribution Constant value from 60 to 400 and a single SCBD peak between 40-85° C. with a mass fraction of less than 3% above 85° C. as determined by CEF, and a ZSVR value from 1.0 to 5.5. The multilayer thermoplastic film is biaxially stretched at a temperature of 60° C. to 120° C. with a blow-up ratio from 2:1 to 10:1.
    Type: Application
    Filed: August 20, 2019
    Publication date: August 25, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Nicolas Cardoso Mazzola, Sanjib Biswas, Jacquelyn A. deGroot, David T. Gillespie
  • Publication number: 20220228297
    Abstract: A process comprising forming fibers having at least a first region and a second region wherein the first region comprises an ethylene/alpha olefin interpolymer composition characterized by: density in the range of 0.930 to 0.965 g/cm3; melt index (I2) in the range of from 10 to 60 g/10 minutes; molecular weight distribution in the range of from 1.5 to 2.6; tan delta at 1 radian/second of at least 45; a low temperature peak and a high temperature peak on an elution profile via improved comonomer composition distribution (ICCD) procedure; and full width at half maximum of the high temperature peak is less than 6.0° C. and stretching the fibers to an elongation of at least 20% thereby increasing curl of the fiber. The process may further include forming a non-woven from the fibers and the stretching of the fibers may occur before or after forming of the non-woven.
    Type: Application
    Filed: November 20, 2019
    Publication date: July 21, 2022
    Inventors: Akanksha Garg, Yinglong Chen, Yijian Lin, Sanjib Biswas, Pavan Kumar Valavala, Fabricio Arteaga Larios, Jill Martin
  • Publication number: 20220056250
    Abstract: The present invention provides polyethylene-based compositions suitable for packaging applications, films, and articles. In one aspect, a polyethylene-based composition suitable for packaging applications comprises (a) at least 97% by weight, based on the total weight of the polyethylene-based composition, of a polyethylene composition comprising: (i) from 25 to 37 percent by weight of a first polyethylene fraction having a density in the range of 0.935 to 0.947 g/cm3 and a melt index (I2) of less than 0.1 g/10 minutes; and (ii) from 63 to 75 percent by weight of a second polyethylene fraction; and (b) 90 to 540 ppm, based on the total weight of the polyethylene-based composition of a calcium salt of 1,2-cyclohexanedicarboxylic acid; wherein the polyethylene composition has less than 0.10 branches per 1,000 carbon atoms when measured using 13C NMR, wherein the density of the polyethylene-based composition N is at least 0.965 g/cm3, and wherein the melt index (I2) of the polyethylene-based composition is 0.
    Type: Application
    Filed: May 1, 2020
    Publication date: February 24, 2022
    Inventors: Andrew T. Heitsch, Sanjib Biswas, Mridula Kapur, Alexander Williamson, Philip P. Fontaine, Joshua B. Gaubert, Daniel W. Baugh, III, Jin Wang, Didem Oner-Deliormanli, Hitendra K. Singh, Shadid Askar, Arnaldo T. Lorenzo, Mehmet Demirors, Vivek Kalihari
  • Publication number: 20220049377
    Abstract: Disclosed is a curly fiber having a fiber centroid and comprising a first region having a first centroid and a second region wherein the first region comprises an ethylene/alpha olefin interpolymer composition in an amount of at least 75 weight percent based on total weight of the first region and wherein the ethylene/alpha olefin interpolymer composition is characterized by a low temperature peak and a high temperature peak on an elution profile via improved comonomer composition distribution (ICCD) procedure, and a full width at half maximum of the high temperature peak is less than 6.0° C. and the second region is a material comprising a polymer which is different from the ethylene/alpha-olefin interpolymer of the first region and wherein the regions are arranged such that at least one of the first centroid and the second centroid is not the same as the fiber centroid.
    Type: Application
    Filed: November 20, 2019
    Publication date: February 17, 2022
    Inventors: Yinglong CHEN, Akanksha GARG, Yijian LIN, Sanjib BISWAS, Jeffrey D. WEINHOLD, Pavan Kumar VALAVALA, Fabricio Arteaga LARIOS, Jill MARTIN, Didem ONER-DELIORMANLI, Mehmet DEMIRORS
  • Publication number: 20220002924
    Abstract: A nonwoven fabric comprises at least one fiber having a first component prepared from at least 75 wt. % of bimodalethylene/alpha-olefin interpolymer composition, wherein the ethylene/alpha-olefin interpolymer composition is characterized by: a density in the range of 0.930 to 0.965 g/cm3, a melt index (I2) in the range of from 10 to 60 g/10 minutes, wherein the I2 is measured according to ASTM D1238, 190 C, 2.16 kg, a molecular weight distribution, expressed as the ratio of the weight average molecular weight to number average molecular weight (Mw(GPC)/Mn(GPC)) as determined by GPC of from 1.5 to 2.6, a tan delta at 1 radian/second of at least 45, a low temperature peak and a high temperature peak on an elution profile via improved comonomer composition distribution (ICCD) procedure, and a full width at half maximum of the high temperature peak is less than 6.0° C.
    Type: Application
    Filed: November 20, 2019
    Publication date: January 6, 2022
    Inventors: Mehmet DEMIRORS, Fabricio Arteaga LARIOS, Mridula KAPUR, Philip P. FONTAINE, David T. GILLESPIE, Yijian LIN, Lanhe ZHANG, Sanjib BISWAS, Eduardo ALVAREZ, Aleksandar STOILJKOVIC, Rajen M. PATEL
  • Publication number: 20210334310
    Abstract: Techniques for annotating electronic content items include receiving over a communication network a first request to associate a first tag from among a plurality different of tags with first electronic content, wherein each tag from among the plurality of tags is: configured to label electronic content, and associated with a respective task from among a plurality of tasks; recording, in response to receiving the first request, a first association between the first electronic content and the first tag; and transmitting over the communication network to a first recipient client: the first electronic content, and an instruction to the first recipient client to cause the first recipient client to execute, in response to receiving the first electronic content, the respective task associated with the first tag on the first electronic content.
    Type: Application
    Filed: July 5, 2021
    Publication date: October 28, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Mitali JAIN, Praveen UPADHYAY, Mahesh SRIDHARAN, Rajiv KUMAR, Sanjib BISWAS, Arun RAJAPPA, Sunny MITRA, Aloka Sanjib Kumar MITRA
  • Publication number: 20210299948
    Abstract: A method of fused filament fabrication (FFF) additive manufacturing comprises employing a thermoplastic blend comprised of high density polyethylene and a second thermoplastic polymer, wherein the second polymer is a low density polyethylene (LDPE), functionalized polyolefin or combination thereof and the amount of high density polyethylene to the amount of second thermoplastic polymer by weight is a ratio from 1.5/1 to 20/1. LDPE means a polyethylene that have been radically polymerized at high pressure. The method allows for the additive manufacturing article that retains the desirable mechanical properties of HDPE without experiencing the problems inherent in FFF printing of HDPE or use of solid fillers. In a particular embodiment, the additive manufactured article has a continuous phase and the second thermoplastic polymer is present as a discontinuous phase within the additive article manufactured article and the filament used to make the article.
    Type: Application
    Filed: July 12, 2019
    Publication date: September 30, 2021
    Inventors: Craig F. Gorin, Sanjib Biswas, Sharon Allen, Scott T. Matteucci, Daniel L. Dermody, Harpreet Singh, Aleksander J. Pyzik