Patents by Inventor Sanjiv Dabee

Sanjiv Dabee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10144877
    Abstract: A method of processing stranded remote gas comprising (a) introducing stranded remote gas and steam to a reforming unit to produce synthesis gas (syngas), wherein the stranded remote gas comprises methane, carbon dioxide, and sulfur-containing compounds, and wherein the syngas is characterized by a molar ratio of hydrogen to carbon monoxide of from about 1.7:1 to about 2.5:1; (b) introducing at least a portion of the syngas to a Fischer-Tropsch (FT) unit to produce an FT syncrude product, FT water, and FT tail gas, wherein the FT syncrude product comprises FT hydrocarbon liquids, wherein the FT syncrude product comprises FT wax in an amount of less than about 5 wt. %, and wherein the FT unit is characterized by an FT reaction temperature of from about 300° C. to about 350° C.; and (c) blending the FT syncrude product with crude oil for storage and/or transport.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: December 4, 2018
    Assignee: Fluor Technologies Corporation
    Inventors: Ravi Ravikumar, Paul Koppel, Sanjiv Dabee
  • Patent number: 9856141
    Abstract: A method of producing syngas comprising receiving raw syngas from a gasification unit; introducing the raw syngas and water to a syngas scrubber to produce unshifted syngas; introducing a first portion of unshifted syngas to a first cooling unit to produce cooled unshifted syngas and a first aqueous condensate comprising cyanide in an amount of 5-200 ppmw; recycling the first aqueous condensate to the syngas scrubber; introducing a second portion of unshifted syngas to a water gas shift unit to produce shifted syngas; introducing the shifted syngas to a second cooling unit to produce cooled shifted syngas and a second aqueous condensate comprising cyanide in an amount of less than 2.5 ppmw; contacting the cooled shifted syngas with the cooled unshifted syngas to produce modified syngas; and introducing the second aqueous condensate to a sour water stripper to produce stripped water and an acid gas comprising H2S, CO2, and ammonia.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: January 2, 2018
    Assignee: Fluor Technologies Corporation
    Inventors: Ravi Ravikumar, Patrick Goodman, Sanjiv Dabee
  • Patent number: 9815692
    Abstract: A crude oil processing plant that comprises a Fischer-Tropsch reactor is disclosed. The crude oil processing plant comprises a crude oil processing section and a hydrogen production section. The hydrogen production section is coupled to a hydrocracker in the crude oil processing section to deliver a high purity hydrogen stream. The Fischer-Tropsch reactor receives a syngas stream from the hydrogen production section and produces a hydrocarbon stream. When light crude oil is processed, the hydrocracker typically has excess capacities to upgrade the hydrocarbon stream from the Fischer-Tropsch reactor.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: November 14, 2017
    Assignee: Fluor Technologies Corporation
    Inventors: Ravi Ravikumar, Paul E. Koppel, Sanjiv Dabee, Johnathon Zychowicz
  • Publication number: 20170218279
    Abstract: A method of processing stranded remote gas comprising (a) introducing stranded remote gas and steam to a reforming unit to produce synthesis gas (syngas), wherein the stranded remote gas comprises methane, carbon dioxide, and sulfur-containing compounds, and wherein the syngas is characterized by a molar ratio of hydrogen to carbon monoxide of from about 1.7:1 to about 2.5:1; (b) introducing at least a portion of the syngas to a Fischer-Tropsch (FT) unit to produce an FT syncrude product, FT water, and FT tail gas, wherein the FT syncrude product comprises FT hydrocarbon liquids, wherein the FT syncrude product comprises FT wax in an amount of less than about 5 wt. %, and wherein the FT unit is characterized by an FT reaction temperature of from about 300° C. to about 350° C.; and (c) blending the FT syncrude product with crude oil for storage and/or transport.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: Ravi Ravikumar, Paul Koppel, Sanjiv Dabee
  • Publication number: 20170197827
    Abstract: A method of producing syngas comprising receiving raw syngas from a gasification unit; introducing the raw syngas and water to a syngas scrubber to produce unshifted syngas; introducing a first portion of unshifted syngas to a first cooling unit to produce cooled unshifted syngas and a first aqueous condensate comprising cyanide in an amount of 5-200 ppmw; recycling the first aqueous condensate to the syngas scrubber; introducing a second portion of unshifted syngas to a water gas shift unit to produce shifted syngas; introducing the shifted syngas to a second cooling unit to produce cooled shifted syngas and a second aqueous condensate comprising cyanide in an amount of less than 2.5 ppmw; contacting the cooled shifted syngas with the cooled unshifted syngas to produce modified syngas; and introducing the second aqueous condensate to a sour water stripper to produce stripped water and an acid gas comprising H2S, CO2, and ammonia.
    Type: Application
    Filed: January 7, 2016
    Publication date: July 13, 2017
    Inventors: Ravi Ravikumar, Patrick Goodman, Sanjiv Dabee
  • Publication number: 20160024401
    Abstract: A crude oil processing plant that comprises a Fischer-Tropsch reactor is disclosed. The crude oil processing plant comprises a crude oil processing section and a hydrogen production section. The hydrogen production section is coupled to a hydrocracker in the crude oil processing section to deliver a high purity hydrogen stream. The Fischer-Tropsch reactor receives a syngas stream from the hydrogen production section and produces a hydrocarbon stream. When light crude oil is processed, the hydrocracker typically has excess capacities to upgrade the hydrocarbon stream from the Fischer-Tropsch reactor.
    Type: Application
    Filed: July 28, 2015
    Publication date: January 28, 2016
    Inventors: Ravi Ravikumar, Paul E. Koppel, Sanjiv Dabee, Johnathon Zychowicz
  • Patent number: 9181095
    Abstract: Systems and methods for pre-treatment of acid gas are presented in which ammonium is removed from the acid gas in an absorber that is operated at significantly elevated temperature using dilute phosphoric acid. While seemingly incompatible, absorbing ammonia at high heat in the absorber will allow for production of a diammonium phosphate product that is ultra-low in residual sulfurous compounds and prevent crystallization of phosphate salts due to the increased solubility of the salts in the hot diluted solvent.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: November 10, 2015
    Assignee: Fluor Technologies Corporation
    Inventors: Ravi Ravikumar, Paul M. Mathias, Paul E. Koppel, Sanjiv Dabee
  • Publication number: 20150014590
    Abstract: Systems and methods for pre-treatment of acid gas are presented in which ammonium is removed from the acid gas in an absorber that is operated at significantly elevated temperature using dilute phosphoric acid. While seemingly incompatible, absorbing ammonia at high heat in the absorber will allow for production of a diammonium phosphate product that is ultra-low in residual sulfurous compounds and prevent crystallization of phosphate salts due to the increased solubility of the salts in the hot diluted solvent.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Inventors: Ravi Ravikumar, Paul M. Mathias, Paul E. Koppel, Sanjiv Dabee