Patents by Inventor Sanjoy Ghose

Sanjoy Ghose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11635671
    Abstract: Introduced here are computer programs and associated computer-implemented techniques for determining reflectance of an image on a per-pixel basis. More specifically, a characterization module can initially acquire a first data set generated by a multi-channel light source and a second data set generated by a multi-channel image sensor. The first data set may specify the illuminance of each color channel of the multi-channel light source (which is configured to produce a flash), while the second data set may specify the response of each sensor channel of the multi-channel image sensor (which is configured to capture an image in conjunction with the flash). Thus, the characterization module may determine reflectance based on illuminance and sensor response. The characterization module may also be configured to determine illuminance based on reflectance and sensor response, or determine sensor response based on illuminance and reflectance.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: April 25, 2023
    Assignee: RINGO AI, INC.
    Inventors: Matthew D. Weaver, James Kingman, Jay Hurley, Jeffrey Saake, Sanjoy Ghose
  • Publication number: 20210263393
    Abstract: Introduced here are computer programs and associated computer-implemented techniques for determining reflectance of an image on a per-pixel basis. More specifically, a characterization module can initially acquire a first data set generated by a multi-channel light source and a second data set generated by a multi-channel image sensor. The first data set may specify the illuminance of each color channel of the multi-channel light source (which is configured to produce a flash), while the second data set may specify the response of each sensor channel of the multi-channel image sensor (which is configured to capture an image in conjunction with the flash). Thus, the characterization module may determine reflectance based on illuminance and sensor response. The characterization module may also be configured to determine illuminance based on reflectance and sensor response, or determine sensor response based on illuminance and reflectance.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 26, 2021
    Inventors: Matthew D. WEAVER, James KINGMAN, Jay HURLEY, Jeffrey SAAKE, Sanjoy GHOSE
  • Patent number: 10990793
    Abstract: Introduced here are computer programs and associated computer-implemented techniques for determining reflectance of an image on a per-pixel basis. More specifically, a characterization module can initially acquire a first data set generated by a multi-channel light source and a second data set generated by a multi-channel image sensor. The first data set may specify the illuminance of each color channel of the multi-channel light source (which is configured to produce a flash), while the second data set may specify the response of each sensor channel of the multi-channel image sensor (which is configured to capture an image in conjunction with the flash). Thus, the characterization module may determine reflectance based on illuminance and sensor response. The characterization module may also be configured to determine illuminance based on reflectance and sensor response, or determine sensor response based on illuminance and reflectance.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: April 27, 2021
    Assignee: RINGO AI, INC.
    Inventors: Matthew D. Weaver, James Kingman, Jay Hurley, Jeffrey Saake, Sanjoy Ghose
  • Patent number: 10706253
    Abstract: Introduced here are light sources for flash photography configured to produce high-fidelity white light that is tunable over a broader range of correlated color temperatures (CCTs) than conventional flash technologies. The light source can include multiple independently controllable color channels representing illuminants (e.g., light-emitting diodes) of different colors with varying degrees of saturation. Operating collectively, the multiple color channels can produce a high spectral quality white light corresponding to different CCTs (e.g., “warm” white light having a red hue, “cool” white light having a blue hue). Operating independently, these same color channels can be pre-flashed in a variety of prescribed sequences to probe the spectral characteristics of a scene, thereby allowing for an enhanced, spectrally matched white flash as well as collecting per-pixel reflectivity data that can be later used in during post processing of the captured image.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: July 7, 2020
    Assignee: RINGO AI, INC.
    Inventors: Matthew D. Weaver, James Kingman, Jay Hurley, Jeffrey Saake, Sanjoy Ghose
  • Patent number: 10602596
    Abstract: Various embodiments relate to systems and methods for controlling one or more LED-based lighting sources that are coupled to a logic module by a ribbon cable. The ribbon cable allows some or all of the processing components (e.g., processors and drivers) to be decoupled from the LED-based lighting source(s). The processing components can instead be housed within the logic module, which is able to simultaneously control the LED-based lighting source(s). Together with color models established for each LED board, the logic module acts as a platform for modularity and is able to more precisely control the color channels of each LED-based lighting source using the color models established for those LED-based lighting source(s). Techniques are also described herein that allow the logic module to utilize data stored within an erasable programmable read-only memory (EPROM) that describes the color characteristics of an LED-based lighting source.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: March 24, 2020
    Assignee: Lumenetix, LLC
    Inventors: David Bowers, Thomas Poliquin, Dustin Cochran, Matthew D. Weaver, Jay Hurley, James Kingman, Bryant Grigsby, Sanjoy Ghose
  • Publication number: 20190340407
    Abstract: Introduced here are computer programs and associated computer-implemented techniques for determining reflectance of an image on a per-pixel basis. More specifically, a characterization module can initially acquire a first data set generated by a multi-channel light source and a second data set generated by a multi-channel image sensor. The first data set may specify the illuminance of each color channel of the multi-channel light source (which is configured to produce a flash), while the second data set may specify the response of each sensor channel of the multi-channel image sensor (which is configured to capture an image in conjunction with the flash). Thus, the characterization module may determine reflectance based on illuminance and sensor response. The characterization module may also be configured to determine illuminance based on reflectance and sensor response, or determine sensor response based on illuminance and reflectance.
    Type: Application
    Filed: May 23, 2019
    Publication date: November 7, 2019
    Inventors: Matthew D. Weaver, James Kingman, Jay Hurley, Jeffrey Saake, Sanjoy Ghose
  • Publication number: 20190325191
    Abstract: Introduced here are light sources for flash photography configured to produce high-fidelity white light that is tunable over a broader range of correlated color temperatures (CCTs) than conventional flash technologies. The light source can include multiple independently controllable color channels representing illuminants (e.g., light-emitting diodes) of different colors with varying degrees of saturation. Operating collectively, the multiple color channels can produce a high spectral quality white light corresponding to different CCTs (e.g., “warm” white light having a red hue, “cool” white light having a blue hue). Operating independently, these same color channels can be pre-flashed in a variety of prescribed sequences to probe the spectral characteristics of a scene, thereby allowing for an enhanced, spectrally matched white flash as well as collecting per-pixel reflectivity data that can be later used in during post processing of the captured image.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Matthew D. Weaver, James Kingman, Jay Hurley, Jeffrey Saake, Sanjoy Ghose
  • Patent number: 10346670
    Abstract: Introduced here are light sources for flash photography configured to produce high-fidelity white light that is tunable over a broader range of correlated color temperatures (CCTs) than conventional flash technologies. The light source can include multiple independently controllable color channels representing illuminants (e.g., light-emitting diodes) of different colors with varying degrees of saturation. Operating collectively, the multiple color channels can produce a high spectral quality white light corresponding to different CCTs (e.g., “warm” white light having a red hue, “cool” white light having a blue hue). Operating independently, these same color channels can be pre-flashed in a variety of prescribed sequences to probe the spectral characteristics of a scene, thereby allowing for an enhanced, spectrally matched white flash as well as collecting per-pixel reflectivity data that can be later used in during post processing of the captured image.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: July 9, 2019
    Assignee: LUMENETIX, INC.
    Inventors: Matthew D. Weaver, James Kingman, Jay Hurley, Jeffrey Saake, Sanjoy Ghose
  • Patent number: 10303920
    Abstract: Introduced here are computer programs and associated computer-implemented techniques for determining reflectance of an image on a per-pixel basis. More specifically, a characterization module can initially acquire a first data set generated by a multi-channel light source and a second data set generated by a multi-channel image sensor. The first data set may specify the illuminance of each color channel of the multi-channel light source (which is configured to produce a flash), while the second data set may specify the response of each sensor channel of the multi-channel image sensor (which is configured to capture an image in conjunction with the flash). Thus, the characterization module may determine reflectance based on illuminance and sensor response. The characterization module may also be configured to determine illuminance based on reflectance and sensor response, or determine sensor response based on illuminance and reflectance.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: May 28, 2019
    Assignee: LUMENETIX, INC.
    Inventors: Matthew D. Weaver, James Kingman, Jay Hurley, Jeffrey Saake, Sanjoy Ghose
  • Publication number: 20190141815
    Abstract: Various embodiments relate to systems and methods for controlling one or more LED-based lighting sources that are coupled to a logic module by a ribbon cable. The ribbon cable allows some or all of the processing components (e.g., processors and drivers) to be decoupled from the LED-based lighting source(s). The processing components can instead be housed within the logic module, which is able to simultaneously control the LED-based lighting source(s). Together with color models established for each LED board, the logic module acts as a platform for modularity and is able to more precisely control the color channels of each LED-based lighting source using the color models established for those LED-based lighting source(s). Techniques are also described herein that allow the logic module to utilize data stored within an erasable programmable read-only memory (EPROM) that describes the color characteristics of an LED-based lighting source.
    Type: Application
    Filed: August 20, 2018
    Publication date: May 9, 2019
    Inventors: David Bowers, Thomas Poliquin, Dustin Cochran, Matthew D. Weaver, Jay Hurley, James Kingman, Bryant Grigsby, Sanjoy Ghose
  • Publication number: 20190012511
    Abstract: Introduced here are computer programs and associated computer-implemented techniques for determining reflectance of an image on a per-pixel basis. More specifically, a characterization module can initially acquire a first data set generated by a multi-channel light source and a second data set generated by a multi-channel image sensor. The first data set may specify the illuminance of each color channel of the multi-channel light source (which is configured to produce a flash), while the second data set may specify the response of each sensor channel of the multi-channel image sensor (which is configured to capture an image in conjunction with the flash). Thus, the characterization module may determine reflectance based on illuminance and sensor response. The characterization module may also be configured to determine illuminance based on reflectance and sensor response, or determine sensor response based on illuminance and reflectance.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 10, 2019
    Inventors: Matthew D. Weaver, James Kingman, Jay Hurley, Jeffrey Saake, Sanjoy Ghose
  • Publication number: 20190014638
    Abstract: Introduced here are light sources for flash photography configured to produce high-fidelity white light that is tunable over a broader range of correlated color temperatures (CCTs) than conventional flash technologies. The light source can include multiple independently controllable color channels representing illuminants (e.g., light-emitting diodes) of different colors with varying degrees of saturation. Operating collectively, the multiple color channels can produce a high spectral quality white light corresponding to different CCTs (e.g., “warm” white light having a red hue, “cool” white light having a blue hue). Operating independently, these same color channels can be pre-flashed in a variety of prescribed sequences to probe the spectral characteristics of a scene, thereby allowing for an enhanced, spectrally matched white flash as well as collecting per-pixel reflectivity data that can be later used in during post processing of the captured image.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 10, 2019
    Inventors: Matthew D. Weaver, James Kingman, Jay Hurley, Jeffrey Saake, Sanjoy Ghose
  • Patent number: 10098199
    Abstract: Various embodiments relate to systems and methods for controlling one or more LED-based lighting sources that are coupled to a logic module by a ribbon cable. The ribbon cable allows some or all of the processing components (e.g., processors and drivers) to be decoupled from the LED-based lighting source(s). The processing components can instead be housed within the logic module, which is able to simultaneously control the LED-based lighting source(s). Together with color models established for each LED board, the logic module acts as a platform for modularity and is able to more precisely control the color channels of each LED-based lighting source using the color models established for those LED-based lighting source(s). Techniques are also described herein that allow the logic module to utilize data stored within an erasable programmable read-only memory (EPROM) that describes the color characteristics of an LED-based lighting source.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: October 9, 2018
    Assignee: LUMENETIX, INC.
    Inventors: David Bowers, Thomas Poliquin, Dustin Cochran, Matthew D. Weaver, Jay Hurley, James Kingman, Bryant Grigsby, Sanjoy Ghose
  • Publication number: 20170142802
    Abstract: Various embodiments relate to systems and methods for controlling one or more LED-based lighting sources that are coupled to a logic module by a ribbon cable. The ribbon cable allows some or all of the processing components (e.g., processors and drivers) to be decoupled from the LED-based lighting source(s). The processing components can instead be housed within the logic module, which is able to simultaneously control the LED-based lighting source(s). Together with color models established for each LED board, the logic module acts as a platform for modularity and is able to more precisely control the color channels of each LED-based lighting source using the color models established for those LED-based lighting source(s). Techniques are also described herein that allow the logic module to utilize data stored within an erasable programmable read-only memory (EPROM) that describes the color characteristics of an LED-based lighting source.
    Type: Application
    Filed: December 16, 2016
    Publication date: May 18, 2017
    Inventors: David Bowers, Thomas Poliquin, Dustin Cochran, Matthew D. Weaver, Jay Hurley, James Kingman, Bryant Grigsby, Sanjoy Ghose
  • Publication number: 20160050723
    Abstract: Some embodiments of this disclosure operate a LED-based lamp module in conjunction with a controller, such as a general-purpose mobile device or other light control system. The operations can include producing light at a current correlated color temperature (CCT) from a light source comprising an LED set of different color LEDs; authenticating a connection between a mobile device and the LED-based lamp module; receiving a target CCT for the LED-based lamp module; determining a target LED driving condition that produces the target CCT based on a color mixing plan stored in the LED-based lamp module; and adjusting the current CCT towards the target CCT by adjusting a current LED driving condition towards the target LED driving condition.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 18, 2016
    Inventors: Daniel Gochnauer, Yaron Rosenbaum, Jay Hurley, Alex Lynchosky, Thomas Poliquin, James Kingman, Sanjoy Ghose
  • Patent number: 8783894
    Abstract: A lighting system is described. The lighting system includes a lamp and a first container including a first phase change material thermally connected to the lamp. Heat generated by the lamp during operation is conducted to the first phase change material. The system also includes a second container including a second phase change material thermally connected to the lamp. Heat generated by the lamp during operation is also conducted to the second phase change material, and the second phase change material has a transition point temperature lower than the transition point temperature of the first phase change material of the first container to account for a temperature drop between the second container and the first container. The lighting system also includes a temperature sensor for reducing lamp power if the lamp becomes too hot, and a mounting bracket which may also conduct heat away from the lamp.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: July 22, 2014
    Assignee: Lumenetix, Inc.
    Inventors: Robert Hitchcock, James Kingman, Matthew D. Weaver, Dustin Cochran, Sanjoy Ghose
  • Publication number: 20140169026
    Abstract: A linear light module that uses a thermally conductive housing for dissipating heat generated by a lighting source within the housing is described. Light is thermally coupled away from the lighting source via a thermally conductive heating block. The heating block is thermally coupled to a thermally conductive heat pipe that runs along the length of the housing, where the length of the housing is substantially the same length as the linear light module. The housing is extruded to include a channel that runs the length of the housing for holding the heat pipe. Because the housing is long, the heat is easily conducted from the housing.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 19, 2014
    Applicant: Lumenetix, Inc.
    Inventors: Dustin Cochran, Herman Ferrier, Sanjoy Ghose
  • Publication number: 20140169025
    Abstract: A linear light module having an optical coupling element and a light pipe is described. The optical coupling element receives light emitted by multiple light emitting diodes (LEDs) having different emission wavelengths and couples the light efficiently to a linear light pipe. The light from the LEDs is efficiently mixed by the optical coupling element and the light pipe to produce a linear light output that is uniform in color and intensity. Diffusers can be used with the optical coupling element and light pipe at various locations to further enhance the uniformity of the emitted light.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 19, 2014
    Applicant: Lumenetix, Inc.
    Inventors: Matthew D. Weaver, Dustin Cochran, Robert Alan Nottingham, Herman Ferrier, Thomas Poliquin, David Bowers, Yuko Nakazawa, James Kingman, Kevin Pelletier, Sanjoy Ghose
  • Publication number: 20140168777
    Abstract: A linear light module having an optical coupling element and a light pipe is described. The optical coupling element receives light emitted by multiple light emitting diodes (LEDs) having different emission wavelengths and couples the light efficiently to a linear light pipe. The light from the LEDs is efficiently mixed by the optical coupling element and the light pipe to produce a linear light output that is uniform in color and intensity. Light diffusers can be used with the optical coupling element and light pipe at various locations to further enhance the uniformity of the emitted light. Novel techniques for manufacturing the light diffusers that use patterning of a suspension solution or injection molding are described.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 19, 2014
    Applicant: Lumenetix, Inc.
    Inventors: Dustin Cochran, Sanjoy Ghose
  • Patent number: 8427036
    Abstract: A phase change material (PCM) is used as thermal storage for lighting systems. The PCM is placed in a thermally conductive container in close contact with the lighting system. As the PCM absorbs heat, it changes from a solid to a liquid state, but the temperature of the PCM is clamped at its melting point temperature. For LED-based systems, the PCM is selected to have a melting point such that the junction temperatures of the LEDs in the system are maintained at approximately their optimum operating temperature inside the lighting system housing. Because the thermal conductivity of the molten PCM is poor, a low thermal resistance heat flow path is provided from the PCM to the container.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: April 23, 2013
    Assignee: Lumenetix, Inc.
    Inventors: Matthew Weaver, James Kingman, Sanjoy Ghose