Patents by Inventor Sanket Sant

Sanket Sant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210110998
    Abstract: An apparatus for processing a substrate is provided. A chamber wall forms a processing chamber cavity. A substrate support for supporting the substrate is within the processing chamber cavity. A gas inlet for providing gas into the processing chamber is above a surface of the substrate. A window for passing RF power into the processing chamber cavity comprises a quartz window body and a coating of at least one of erbium oxide, erbium fluoride, samarium oxide, samarium fluoride, thulium oxide thulium fluoride, gadolinium oxide, or gadolinium fluoride on a surface of the ceramic window body. A coil is outside of the processing chamber cavity, wherein the window is between the processing chamber cavity and the coil.
    Type: Application
    Filed: February 24, 2020
    Publication date: April 15, 2021
    Inventor: Sanket Sant
  • Publication number: 20200203126
    Abstract: An apparatus for processing a substrate is provided. A chamber wall forms a processing chamber cavity. A substrate support for supporting the substrate is within the processing chamber cavity. A gas inlet for providing gas into the processing chamber is above a surface of the substrate. A window for passing RF power into the processing chamber cavity comprises a quartz window body and a coating of at least one of erbium oxide, erbium fluoride, samarium oxide, samarium fluoride, thulium oxide thulium fluoride, gadolinium oxide, or gadolinium fluoride on a surface of the ceramic window body. A coil is outside of the processing chamber cavity, wherein the window is between the processing chamber cavity and the coil.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 25, 2020
    Inventor: Sanket Sant
  • Publication number: 20160365261
    Abstract: An apparatus for processing a substrate is provided. A processing chamber is provided. A substrate support for supporting the substrate is within the processing chamber. An edge ring is on the substrate support, wherein the edge ring comprises nitrogen free doped quartz with a dopant of either AlO and YO or a dopant of LaO. A gas inlet for providing gas into the processing chamber is above a surface of the substrate. At least one electrode provides RF power into the processing chamber.
    Type: Application
    Filed: June 6, 2016
    Publication date: December 15, 2016
    Inventor: Sanket SANT
  • Publication number: 20160358749
    Abstract: An apparatus for processing a substrate is provided. A chamber wall forms a processing chamber cavity. A substrate support for supporting the substrate is within the processing chamber cavity. A gas inlet for providing gas into the processing chamber is above a surface of the substrate. A window for passing RF power into the processing chamber cavity comprises a ceramic or quartz window body and a coating of at least one of erbium oxide, erbium fluoride, samarium oxide, samarium fluoride, thulium oxide thulium fluoride, gadolinium oxide, or gadolinium fluoride on a surface of the ceramic window body. A coil is outside of the processing chamber cavity, wherein the window is between the processing chamber cavity and the coil.
    Type: Application
    Filed: May 18, 2016
    Publication date: December 8, 2016
    Inventor: Sanket Sant
  • Patent number: 9117766
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: August 25, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Sanket Sant, Gurtej Sandhu, Neal R. Rueger
  • Patent number: 9029267
    Abstract: A method for controlling thermal cycling of a faraday shield in a plasma process chamber is provided. The method includes: performing a first plasma processing operation on a first wafer in the plasma process chamber; terminating the first plasma processing operation; performing a first wafer transfer operation to transfer the first wafer out of the chamber; and, during the first wafer transfer operation, applying power to a TCP coil under a plasma limiting condition.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: May 12, 2015
    Assignee: Lam Research Corporation
    Inventors: Sanket Sant, Raphael Casaes
  • Publication number: 20150024602
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 22, 2015
    Inventors: Sanket Sant, Gurtej Sandhu, Neal R. Rueger
  • Publication number: 20140342568
    Abstract: A method for controlling thermal cycling of a faraday shield in a plasma process chamber is provided. The method includes: performing a first plasma processing operation on a first wafer in the plasma process chamber; terminating the first plasma processing operation; performing a first wafer transfer operation to transfer the first wafer out of the chamber; and, during the first wafer transfer operation, applying power to a TCP coil under a plasma limiting condition.
    Type: Application
    Filed: May 16, 2013
    Publication date: November 20, 2014
    Applicant: Lam Research Corporation
    Inventors: Sanket Sant, Raphael Casaes
  • Patent number: 8865598
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: October 21, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Sanket Sant, Gurtej Sandhu, Neal R. Rueger
  • Patent number: 8784676
    Abstract: A method for reducing contamination in an etch chamber is provided. A substrate with a metal containing layer is placed in the etch chamber. The metal containing layer is etched, producing nonvolatile metal residue deposits on surfaces of the etch chamber, wherein some of the metal residue of the metal residue deposits is in a first state. The substrate is removed from the etch chamber. The chamber is conditioned by converting metal residue in the first state to metal residue in a second state, where metal residue in the second state has stronger adhesion to surfaces of the etch chamber than metal residue in the first state.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: July 22, 2014
    Assignee: Lam Research Corporation
    Inventors: Joydeep Guha, Sanket Sant, Butsurin Jinnai
  • Publication number: 20140087563
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanket Sant, Gurtej Sandhu, Neal R. Rueger
  • Patent number: 8598041
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: December 3, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanket Sant, Gurtej Sandhu, Neal R. Rueger
  • Patent number: 8525139
    Abstract: A wafer is provided into an entrance load lock chamber. A vacuum is created in the entrance load lock chamber. The wafer is transported to a processing tool. The wafer is processed in a process chamber to provide a processed wafer, wherein the processing forms halogen residue. A degas step is provided in the process chamber after processing the wafer. The processed wafer is transferred into a degas chamber. The processed wafer is treated in the degas chamber with UV light and a flow of gas comprising at least one of ozone, oxygen, or H2O. The flow of gas is stopped. The UV light is stopped. The processed wafer is removed from the degas chamber.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: September 3, 2013
    Assignee: Lam Research Corporation
    Inventors: Harmeet Singh, Sanket Sant, Shang-I Chou, Vahid Vahedi, Raphael Casaes, Seetharaman Ramachandran
  • Publication number: 20130203255
    Abstract: A method for reducing contamination in an etch chamber is provided. A substrate with a metal containing layer is placed in the etch chamber. The metal containing layer is etched, producing nonvolatile metal residue deposits on surfaces of the etch chamber, wherein some of the metal residue of the metal residue deposits is in a first state. The substrate is removed from the etch chamber. The chamber is conditioned by converting metal residue in the first state to metal residue in a second state, where metal residue in the second state has stronger adhesion to surfaces of the etch chamber than metal residue in the first state.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Joydeep GUHA, Sanket SANT, Butsurin JINNAI
  • Publication number: 20120202350
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 9, 2012
    Applicant: Micron Technology, Inc.
    Inventors: Sanket Sant, Gurtej Sandhu, Neal R. Rueger
  • Patent number: 8232538
    Abstract: A method and apparatus for removing halogen residue from a processed wafer is provided. A wafer is transferred into a processing tool where it is processed in a manner that leaves halogen residue on the wafer. The processed wafer is then moved into a degas chamber where it is treated with UV light and a gas mixture containing at least one of ozone and oxygen to remove the halogen residue. Once treated, the wafer is transferred into an isolation station where it is isolated from the unprocessed wafers for a period of time to allow any remaining residue to dissipate before it is returned to the cassette where it started.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: July 31, 2012
    Assignee: Lam Research Corporation
    Inventors: Sanket Sant, Shang-I Chou
  • Patent number: 8173550
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed around a plurality of mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: May 8, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Sanket Sant, Gurtej Sandhu, Neal R. Rueger
  • Publication number: 20110269252
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed around a plurality of mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Sanket Sant, Gurtej Sandhu, Neal R. Rueger
  • Patent number: 8003542
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed around a plurality of mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: August 23, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Sanket Sant, Gurtej S. Sandhu, Neal R. Rueger
  • Publication number: 20110097902
    Abstract: A wafer is provided into an entrance load lock chamber. A vacuum is created in the entrance load lock chamber. The wafer is transported to a processing tool. The wafer is processed in a process chamber to provide a processed wafer, wherein the processing forms halogen residue. A degas step is provided in the process chamber after processing the wafer. The processed wafer is transferred into a degas chamber. The processed wafer is treated in the degas chamber with UV light and a flow of gas comprising at least one of ozone, oxygen, or H2O. The flow of gas is stopped. The UV light is stopped. The processed wafer is removed from the degas chamber.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 28, 2011
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Harmeet Singh, Sanket Sant, Shang-I Chou, Vahid Vahedi, Raphael Casaes, Seetharaman Ramachandran