Patents by Inventor Sanketh Shetty
Sanketh Shetty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12014542Abstract: A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.Type: GrantFiled: December 14, 2020Date of Patent: June 18, 2024Assignee: Google LLCInventors: Sanketh Shetty, Tomas Izo, Min-Hsuan Tsai, Sudheendra Vijayanarasimhan, Apostol Natsev, Sami Abu-El-Haija, George Dan Toderici, Susana Ricco, Balakrishnan Varadarajan, Nicola Muscettola, WeiHsin Gu, Weilong Yang, Nitin Khandelwal, Phuong Le
-
Patent number: 11829326Abstract: A computerized-method to conduct a staggered maintenance activity based on tenants' prioritization for tenants of a cloud-based Software as a Service (SaaS) platform contact-center, is provided herein. The computerized-method includes operating a Staggered-Maintenance-Activity (SMA) module.Type: GrantFiled: July 20, 2021Date of Patent: November 28, 2023Assignee: inContact INC.Inventors: Sanketh Shetty, Swati Kadu, Yuvraj Sawant
-
Publication number: 20230023025Abstract: A computerized-method to conduct a staggered maintenance activity based on tenants' prioritization for tenants of a cloud-based Software as a Service (SaaS) platform contact-center, is provided herein. The computerized-method includes operating a Staggered-Maintenance-Activity (SMA) module.Type: ApplicationFiled: July 20, 2021Publication date: January 26, 2023Inventors: Sanketh SHETTY, Swati KADU, Yuvraj SAWANT
-
Publication number: 20220207873Abstract: A system and methodology provide for annotating videos with entities and associated probabilities of existence of the entities within video frames. A computer-implemented method identifies an entity from a plurality of entities identifying characteristics of video items. The computer-implemented method selects a set of features correlated with the entity based on a value of a feature of a plurality of features, determines a classifier for the entity using the set of features, and determines an aggregation calibration function for the entity based on the set of features. The computer-implemented method selects a video frame from a video item, where the video frame having associated features, and determines a probability of existence of the entity based on the associated features using the classifier and the aggregation calibration function.Type: ApplicationFiled: December 13, 2021Publication date: June 30, 2022Inventors: Balakrishnan Varadarajan, George Dan Toderici, Apostol Natsev, Nitin Khandelwal, Sudheendra Vijayanarasimhan, Weilong Yang, Sanketh Shetty
-
Patent number: 11328218Abstract: A system and method for identifying and predicting subjective attributes for entities (e.g., media clips, movies, television shows, images, newspaper articles, blog entries, persons, organizations, commercial businesses, etc.) are disclosed. In one aspect, subjective attributes for a first media item are identified based on a reaction to the first media item, and relevancy scores for the subjective attributes with respect to the first media item are determined. A classifier is trained using (i) a training input comprising a set of features for the first media item, and a target output for the training input, the target output comprising the respective relevancy scores for the subjective attributes with respect to the first media item.Type: GrantFiled: November 6, 2017Date of Patent: May 10, 2022Assignee: Google LLCInventors: Hrishikesh Aradhye, Sanketh Shetty
-
Patent number: 11200423Abstract: A system and methodology provide for annotating videos with entities and associated probabilities of existence of the entities within video frames. A computer-implemented method identifies an entity from a plurality of entities identifying characteristics of video items. The computer-implemented method selects a set of features correlated with the entity based on a value of a feature of a plurality of features, determines a classifier for the entity using the set of features, and determines an aggregation calibration function for the entity based on the set of features. The computer-implemented method selects a video frame from a video item, where the video frame having associated features, and determines a probability of existence of the entity based on the associated features using the classifier and the aggregation calibration function.Type: GrantFiled: November 18, 2019Date of Patent: December 14, 2021Assignee: Google LLCInventors: Balakrishnan Varadarajan, George Dan Toderici, Apostol Natsev, Nitin Khandelwal, Sudheendra Vijayanarasimhan, Weilong Yang, Sanketh Shetty
-
Patent number: 11087049Abstract: Example implementations described herein facilitate an interactive environment for companies and personals to validate and develop autonomous driving systems. Such implementations apply to, but are not limited to, applications such as sensor data collection for deep learning model training; validation and development of various detection algorithms; sensor fusion (e.g., radar, lidar, camera) algorithm development and validation, trajectory/motion planning algorithm validation; and control algorithm validation.Type: GrantFiled: November 27, 2018Date of Patent: August 10, 2021Assignee: Hitachi, Ltd.Inventors: Yuan Xiao, Sujit Phatak, Heming Chen, Sanketh Shetty
-
Patent number: 11042553Abstract: Facilitating of content entity annotation while maintaining joint quality, coverage and/or completeness performance conditions is provided. In one example, a non-transitory computer-readable medium comprises computer-readable instructions that, in response to execution, cause a computing system to perform operations. The operations include aggregating information indicative of initial entities for content and initial scores associated with the initial entities received from one or more content annotation sources and mapping the initial scores to respective values to generate calibrated scores. The operations include applying weights to the calibrated scores to generate weighted scores and combining the weighted scores using a linear aggregation model to generate a final score. The operations include determining whether to annotate the content with at least one of the initial entities based on a comparison of the final score and a defined threshold value.Type: GrantFiled: November 21, 2017Date of Patent: June 22, 2021Assignee: GOOGLE LLCInventors: Balakrishnan Varadarajan, George Dan Toderici, Apostol Natsev, Weilong Yang, John Burge, Sanketh Shetty, Omid Madani
-
Publication number: 20210166035Abstract: A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.Type: ApplicationFiled: December 14, 2020Publication date: June 3, 2021Inventors: Sanketh Shetty, Tomas Izo, Min-Hsuan Tsai, Sudheendra Vijayanarasimhan, Apostol Natsev, Sami Abu-El-Haija, George Dan Toderici, Susana Ricco, Balakrishnan Varadarajan, Nicola Muscettola, WeiHsin Gu, Weilong Yang, Nitin Khandelwal, Phuong Le
-
Patent number: 10867183Abstract: A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.Type: GrantFiled: April 23, 2018Date of Patent: December 15, 2020Assignee: Google LLCInventors: Sanketh Shetty, Tomas Izo, Min-Hsuan Tsai, Sudheendra Vijayanarasimhan, Apostol Natsev, Sami Abu-El-Haija, George Dan Toderici, Susanna Ricco, Balakrishnan Varadarajan, Nicola Muscettola, WeiHsin Gu, Weilong Yang, Nitin Khandelwal, Phuong Le
-
Publication number: 20200167436Abstract: Example implementations described herein facilitate an interactive environment for companies and personals to validate and develop autonomous driving systems. Such implementations apply to, but are not limited to, applications such as sensor data collection for deep learning model training; validation and development of various detection algorithms; sensor fusion (e.g., radar, lidar, camera) algorithm development and validation, trajectory/motion planning algorithm validation; and control algorithm validation.Type: ApplicationFiled: November 27, 2018Publication date: May 28, 2020Inventors: Yuan XIAO, Sujit PHATAK, Heming CHEN, Sanketh SHETTY
-
Publication number: 20200082173Abstract: A system and methodology provide for annotating videos with entities and associated probabilities of existence of the entities within video frames. A computer-implemented method identifies an entity from a plurality of entities identifying characteristics of video items. The computer-implemented method selects a set of features correlated with the entity based on a value of a feature of a plurality of features, determines a classifier for the entity using the set of features, and determines an aggregation calibration function for the entity based on the set of features. The computer-implemented method selects a video frame from a video item, where the video frame having associated features, and determines a probability of existence of the entity based on the associated features using the classifier and the aggregation calibration function.Type: ApplicationFiled: November 18, 2019Publication date: March 12, 2020Inventors: Balakrishnan Varadarajan, George Dan Toderici, Apostol Natsev, Nitin Khandelwal, Sudheendra Vijayanarasimhan, Weilong Yang, Sanketh Shetty
-
Patent number: 10496650Abstract: Video segments related to an annotation term are identified from a target video. A video dataset and an image data set are searched using the annotation term to generate a video set and an image set. The video set and the image set are iteratively refined to generate a set of iconic images. A frame level model is generated using the set of iconic images and video segments related to the annotation term are identified from the target video by applying the frame level model to frames of the target video.Type: GrantFiled: February 25, 2015Date of Patent: December 3, 2019Assignee: Google LLCInventors: Chen Sun, Sanketh Shetty
-
Patent number: 10482328Abstract: A system and methodology provide for annotating videos with entities and associated probabilities of existence of the entities within video frames. A computer-implemented method identifies an entity from a plurality of entities identifying characteristics of video items. The computer-implemented method selects a set of features correlated with the entity based on a value of a feature of a plurality of features, determines a classifier for the entity using the set of features, and determines an aggregation calibration function for the entity based on the set of features. The computer-implemented method selects a video frame from a video item, where the video frame having associated features, and determines a probability of existence of the entity based on the associated features using the classifier and the aggregation calibration function.Type: GrantFiled: October 2, 2017Date of Patent: November 19, 2019Assignee: Google LLCInventors: Balakrishnan Varadarajan, George Dan Toderici, Apostol Natsev, Nitin Khandelwal, Sudheendra Vijayanarasimhan, Weilong Yang, Sanketh Shetty
-
Patent number: 10390067Abstract: Implementations disclose predicting video start times for maximizing user engagement. A method includes receiving a first content item comprising content item segments, processing the first content item using a trained machine learning model that is trained based on interaction signals and audio-visual content features of a training set of training segments of training content items, and obtaining, based on the processing of the first content item using the trained machine learning model, one or more outputs comprising salience scores for the content item segments, the salience scores indicating which content item segment of the content item segments is to be selected as a starting point for playback of the first content item.Type: GrantFiled: May 12, 2017Date of Patent: August 20, 2019Assignee: Google LLCInventors: Sanketh Shetty, Apostol Natsev, Balakrishnan Varadarajan, Tomas Izo
-
Patent number: 10235428Abstract: Techniques identify time-sensitive content and present the time-sensitive content to communication devices of users interested or potentially interested in the time-sensitive content. A content management component analyzes video or audio content, and extracts information from the content and determines whether the content is time-sensitive content, such as recent news-related content, based on analysis of the content and extracted information. The content management component evaluates user-related information and the extracted information, and determines whether a user(s) is likely to be interested in the time-sensitive content based on the evaluation results. The content management component sends a notification to the communication device(s) of the user(s) in response to determining the user(s) is likely to be interested in the time-sensitive content.Type: GrantFiled: June 28, 2016Date of Patent: March 19, 2019Assignee: Google LLCInventors: Balakrishnan Varadarajan, Sudheendra Vijayanarasimhan, Sanketh Shetty, Nisarg Dilipkumar Kothari, Nicholas Delmonico Rizzolo
-
Publication number: 20180239964Abstract: A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.Type: ApplicationFiled: April 23, 2018Publication date: August 23, 2018Inventors: Sanketh Shetty, Tomas Izo, Min-Hsuan Tsai, Sudheendra Vijayanarasimhan, Apostol Natsev, Sami Abu-El-Haija, George Dan Toderici, Susanna Ricco, Balakrishnan Varadarajan, Nicola Muscettola, WeiHsin Gu, Weilong Yang, Nitin Khandelwal, Phuong Le
-
Patent number: 9953222Abstract: A computer-implemented method for selecting representative frames for videos is provided. The method includes receiving a video and identifying a set of features for each of the frames of the video. The features including frame-based features and semantic features. The semantic features identifying likelihoods of semantic concepts being present as content in the frames of the video. A set of video segments for the video is subsequently generated. Each video segment includes a chronological subset of frames from the video and each frame is associated with at least one of the semantic features. The method generates a score for each frame of the subset of frames for each video segment based at least on the semantic features, and selecting a representative frame for each video segment based on the scores of the frames in the video segment. The representative frame represents and summarizes the video segment.Type: GrantFiled: September 8, 2015Date of Patent: April 24, 2018Assignee: Google LLCInventors: Sanketh Shetty, Tomas Izo, Min-Hsuan Tsai, Sudheendra Vijayanarasimhan, Apostol Natsev, Sami Abu-El-Haija, George Dan Toderici, Susanna Ricco, Balakrishnan Varadarajan, Nicola Muscettola, WeiHsin Gu, Weilong Yang, Nitin Khandelwal, Phuong Le
-
Publication number: 20180089200Abstract: Facilitating of content entity annotation while maintaining joint quality, coverage and/or completeness performance conditions is provided. In one example, a non-transitory computer-readable medium comprises computer-readable instructions that, in response to execution, cause a computing system to perform operations. The operations include aggregating information indicative of initial entities for content and initial scores associated with the initial entities received from one or more content annotation sources and mapping the initial scores to respective values to generate calibrated scores. The operations include applying weights to the calibrated scores to generate weighted scores and combining the weighted scores using a linear aggregation model to generate a final score. The operations include determining whether to annotate the content with at least one of the initial entities based on a comparison of the final score and a defined threshold value.Type: ApplicationFiled: November 21, 2017Publication date: March 29, 2018Inventors: Balakrishnan Varadarajan, George Dan Toderici, Apostol Natsev, Weilong Yang, John Burge, Sanketh Shetty, Omid Madani
-
Publication number: 20180025228Abstract: A system and methodology provide for annotating videos with entities and associated probabilities of existence of the entities within video frames. A computer-implemented method identifies an entity from a plurality of entities identifying characteristics of video items. The computer-implemented method selects a set of features correlated with the entity based on a value of a feature of a plurality of features, determines a classifier for the entity using the set of features, and determines an aggregation calibration function for the entity based on the set of features. The computer-implemented method selects a video frame from a video item, where the video frame having associated features, and determines a probability of existence of the entity based on the associated features using the classifier and the aggregation calibration function.Type: ApplicationFiled: October 2, 2017Publication date: January 25, 2018Inventors: Balakrishnan Varadarajan, George Dan Toderici, Apostol Natsev, Nitin Khandelwal, Sudheendra Vijayanarasimhan, Weilong Yang, Sanketh Shetty