Patents by Inventor Santiago Serrano Guisan

Santiago Serrano Guisan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11683994
    Abstract: A perpendicular magnetic tunnel junction is disclosed wherein a metal insertion (MIS) layer is formed within a free layer (FL), a partially oxidized Hk enhancing layer is on the FL, and a nitride capping layer having a buffer layer/nitride layer (NL) is on the Hk enhancing layer to provide an improved coercivity (Hc)/switching current (Jc) ratio for spintronic applications. Magnetoresistive ratio is maintained above 100%, resistance×area (RA) product is below 5 ohm/?m2, and thermal stability to 400° C. is realized. The FL comprises two or more sub-layers, and the MIS layer may be formed within at least one sub-layer or between sub-layers. The buffer layer is used to prevent oxygen diffusion to the NL, and nitrogen diffusion from the NL to the FL. FL thickness is from 11 Angstroms to 25 Angstroms while MIS layer thickness is preferably from 0.5 Angstroms to 4 Angstroms.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: June 20, 2023
    Assignee: Headway Technologies, Inc.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong
  • Patent number: 11609296
    Abstract: A ferromagnetic resonance (FMR) measurement method is disclosed wherein a magnetic film or stack of layers is patterned into elongated structures having a length along a long axis. A magnetic field (H) is applied in two different orientations with respect to the long axis (in-plane parallel and perpendicular to the long axis) or one orientation may be perpendicular-to-plane. In another embodiment, H is applied parallel to a first set of elongated structures with a long axis in the x-axis direction, and perpendicular to a second set of elongated structures with a long axis in the y-axis direction. From the difference in measured resonance frequency (?fr) (for a fixed magnetic field and sweeping through a range of frequencies) or the difference in measured resonance field (?Hr) (for a fixed microwave frequency and sweeping through a range of magnetic field amplitudes), magnetic saturation Ms is determined using formulas of demagnetizing factors.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Guenole Jan, Son Le
  • Patent number: 11397226
    Abstract: A scanning ferromagnetic resonance (FMR) measurement system is disclosed with a radio frequency (RF) probe and one or two magnetic poles mounted on a holder plate and enable a perpendicular-to-plane or in-plane magnetic field, respectively, at test locations. While the RF probe tip contacts a magnetic film on a whole wafer under test (WUT), a plurality of microwave frequencies (fR) is sequentially transmitted through the probe tip. Simultaneously, a magnetic field (HR) is applied to the contacted region thereby causing a FMR condition in the magnetic film for each pair of (HR, fR) values. RF output signals are transmitted through or reflected from the magnetic film to a RF diode and converted to voltage signals which a controller uses to determine effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening for a sub-mm area. The WUT is moved to preprogrammed locations to enable multiple FMR measurements at each test location.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: July 26, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Guenole Jan, Son Le, Luc Thomas, Santiago Serrano Guisan
  • Publication number: 20220149272
    Abstract: A perpendicular magnetic tunnel junction is disclosed wherein a metal insertion (MIS) layer is formed within a free layer (FL), a partially oxidized Hk enhancing layer is on the FL, and a nitride capping layer having a buffer layer/nitride layer (NL) is on the Hk enhancing layer to provide an improved coercivity (Hc)/switching current (Jc) ratio for spintronic applications. Magnetoresistive ratio is maintained above 100%, resistance×area (RA) product is below 5 ohm/?m2, and thermal stability to 400° C. is realized. The FL comprises two or more sub-layers, and the MIS layer may be formed within at least one sub-layer or between sub-layers. The buffer layer is used to prevent oxygen diffusion to the NL, and nitrogen diffusion from the NL to the FL. FL thickness is from 11 Angstroms to 25 Angstroms while MIS layer thickness is preferably from 0.5 Angstroms to 4 Angstroms.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Santiago Serrano Guisan, Luc Thomas, Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong
  • Patent number: 11264560
    Abstract: A perpendicular magnetic tunnel junction is disclosed wherein first and second interfaces of a free layer (FL) with a first metal oxide (Hk enhancing layer) and second metal oxide (tunnel barrier), respectively, produce perpendicular magnetic anisotropy (PMA) to provide thermal stability to 400° C. Insertion of an oxidation control layer (OCL) such as Mg and a magnetic moment tuning layer (MMTL) like Mo or W enables FL thickness to be reduced below 10 Angstroms while providing sufficient PMA for a switching voltage substantially less than 500 mV at a 10 ns pulse width and 1 ppm defect rate. Magnetoresistive ratio is ?1, and resistance×area (RA) product is below 5 ohm-?m2. Embodiments are provided where MMTL and OCL materials interface with each other, or do not contact each other. Each of the MMTL and OCL materials may be deposited separately, or at least one is co-deposited with the FL.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 1, 2022
    Assignee: Headway Technologies, Inc.
    Inventors: Jodi Mari Iwata, Guenole Jan, Santiago Serrano Guisan, Luc Thomas, Ru-Ying Tong
  • Patent number: 11264566
    Abstract: A perpendicular magnetic tunnel junction is disclosed wherein a metal insertion (MIS) layer is formed within a free layer (FL), a partially oxidized Hk enhancing layer is on the FL, and a nitride capping layer having a buffer layer/nitride layer (NL) is on the Hk enhancing layer to provide an improved coercivity (Hc)/switching current (Jc) ratio for spintronic applications. Magnetoresistive ratio is maintained above 100%, resistance×area (RA) product is below 5 ohm/?m2, and thermal stability to 400° C. is realized. The FL comprises two or more sub-layers, and the MIS layer may be formed within at least one sub-layer or between sub-layers. The buffer layer is used to prevent oxygen diffusion to the NL, and nitrogen diffusion from the NL to the FL. FL thickness is from 11 Angstroms to 25 Angstroms while MIS layer thickness is preferably from 0.5 Angstroms to 4 Angstroms.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 1, 2022
    Assignee: Headway Technologies, Inc.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong
  • Patent number: 11237240
    Abstract: A ferromagnetic resonance (FMR) measurement system is disclosed with a plurality of “m” RF probes and one or more magnetic assemblies to enable a perpendicular-to-plane or in-plane magnetic field (Hap) to be applied simultaneously with a sequence of microwave frequencies (fR) at a plurality of “m” test locations on a magnetic film formed on a whole wafer under test (WUT). A FMR condition occurs in the magnetic film (stack of unpatterned layers or patterned structure) for each pair of (Hap, fR) values. RF input signals are distributed to the RF probes using RF power distribution or routing devices. RF output signals are transmitted through or reflected from the magnetic film to a plurality of “n” RF diodes where 1?n?m, and converted to voltage signals which a controller uses to determine effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening at the predetermined test locations.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Son Le, Guenole Jan
  • Patent number: 11092661
    Abstract: A ferromagnetic resonance (FMR) measurement system is disclosed with a waveguide transmission line (WGTL) connected at both ends to a mounting plate having an opening through which the WGTL is suspended. While the WGTL bottom surface contacts a portion of magnetic film on a whole wafer, a plurality of microwave frequencies is sequentially transmitted through the WGTL. Simultaneously, a magnetic field is applied to the contacted region thereby causing a FMR condition in the magnetic film. After RF output is transmitted through or reflected from the WGTL to a RF detector and converted to a voltage signal, effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening are determined based on magnetic field intensity, microwave frequency and voltage output. A plurality of measurements is performed by controllably moving the WGTL or wafer and repeating the simultaneous application of microwave frequencies and magnetic field at additional preprogrammed locations on the magnetic film.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: August 17, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Son Le, Guenole Jan
  • Publication number: 20210175414
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein a nitride diffusion barrier (NDB) has a L2/L1/NL or NL/L1/L2 configuration wherein NL is a metal nitride or metal oxynitride layer, L2 blocks oxygen diffusion from an adjoining Hk enhancing layer, and L1 prevents nitrogen diffusion from NL to the free layer (FL) thereby enhancing magnetoresistive ratio and FL thermal stability, and minimizing resistance x area product for the MTJ. NL is the uppermost layer in a bottom spin valve configuration, or is formed on a seed layer in a top spin valve configuration such that L2 and L1 are always between NL and the FL or pinned layer, respectively. In other embodiments, one or both of L1 and L2 are partially oxidized. Moreover, either L2 or L1 may be omitted when the other of L1 and L2 is partially oxidized. A spacer between the FL and L2 is optional.
    Type: Application
    Filed: February 23, 2021
    Publication date: June 10, 2021
    Inventors: Santiago Serrano Guisan, Luc Thomas, Jodi Mari Iwata, Guenole Jan, Vignesh Sundar
  • Patent number: 10950782
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein a nitride diffusion barrier (NDB) has a L2/L1/NL or NL/L1/L2 configuration wherein NL is a metal nitride or metal oxynitride layer, L2 blocks oxygen diffusion from an adjoining Hk enhancing layer, and L1 prevents nitrogen diffusion from NL to the free layer (FL) thereby enhancing magnetoresistive ratio and FL thermal stability, and minimizing resistance x area product for the MTJ. NL is the uppermost layer in a bottom spin valve configuration, or is formed on a seed layer in a top spin valve configuration such that L2 and L1 are always between NL and the FL or pinned layer, respectively. In other embodiments, one or both of L1 and L2 are partially oxidized. Moreover, either L2 or L1 may be omitted when the other of L1 and L2 is partially oxidized. A spacer between the FL and L2 is optional.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: March 16, 2021
    Assignee: Headway Technologies, Inc.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Jodi Mari Iwata, Guenole Jan, Vignesh Sundar
  • Publication number: 20210025958
    Abstract: A ferromagnetic resonance (FMR) measurement method is disclosed wherein a magnetic film or stack of layers is patterned into elongated structures having a length along a long axis. A magnetic field (H) is applied in two different orientations with respect to the long axis (in-plane parallel and perpendicular to the long axis) or one orientation may be perpendicular-to-plane. In another embodiment, H is applied parallel to a first set of elongated structures with a long axis in the x-axis direction, and perpendicular to a second set of elongated structures with a long axis in the y-axis direction. From the difference in measured resonance frequency (?fr) (for a fixed magnetic field and sweeping through a range of frequencies) or the difference in measured resonance field (?Hr) (for a fixed microwave frequency and sweeping through a range of magnetic field amplitudes), magnetic saturation Ms is determined using formulas of demagnetizing factors.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 28, 2021
    Inventors: Santiago Serrano Guisan, Luc Thomas, Guenole Jan, Son Le
  • Publication number: 20200403149
    Abstract: A perpendicular magnetic tunnel junction is disclosed wherein a metal insertion (MIS) layer is formed within a free layer (FL), a partially oxidized Hk enhancing layer is on the FL, and a nitride capping layer having a buffer layer/nitride layer (NL) is on the Hk enhancing layer to provide an improved coercivity (Hc)/switching current (Jc) ratio for spintronic applications. Magnetoresistive ratio is maintained above 100%, resistance×area (RA) product is below 5 ohm/?m2, and thermal stability to 400° C. is realized. The FL comprises two or more sub-layers, and the MIS layer may be formed within at least one sub-layer or between sub-layers. The buffer layer is used to prevent oxygen diffusion to the NL, and nitrogen diffusion from the NL to the FL. FL thickness is from 11 Angstroms to 25 Angstroms while MIS layer thickness is preferably from 0.5 Angstroms to 4 Angstroms.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 24, 2020
    Inventors: Santiago Serrano Guisan, Luc Thomas, Jodi Mari Iwata, Guenole Jan, Ru-Ying Tong
  • Publication number: 20200403143
    Abstract: A perpendicular magnetic tunnel junction is disclosed wherein first and second interfaces of a free layer (FL) with a first metal oxide (Hk enhancing layer) and second metal oxide (tunnel barrier), respectively, produce perpendicular magnetic anisotropy (PMA) to provide thermal stability to 400° C. Insertion of an oxidation control layer (OCL) such as Mg and a magnetic moment tuning layer (MMTL) like Mo or W enables FL thickness to be reduced below 10 Angstroms while providing sufficient PMA for a switching voltage substantially less than 500 mV at a 10 ns pulse width and 1 ppm defect rate. Magnetoresistive ratio is ?1, and resistance x area (RA) product is below 5 ohm-?m2. Embodiments are provided where MMTL and OCL materials interface with each other, or do not contact each other. Each of the MMTL and OCL materials may be deposited separately, or at least one is co-deposited with the FL.
    Type: Application
    Filed: June 21, 2019
    Publication date: December 24, 2020
    Inventors: Jodi Mari Iwata, Guenole Jan, Santiago Serrano Guisan, Luc Thomas, Ru-Ying Tong
  • Publication number: 20200393525
    Abstract: A scanning ferromagnetic resonance (FMR) measurement system is disclosed with a radio frequency (RF) probe and one or two magnetic poles mounted on a holder plate and enable a perpendicular-to-plane or in-plane magnetic field, respectively, at test locations. While the RF probe tip contacts a magnetic film on a whole wafer under test (WUT), a plurality of microwave frequencies (fR) is sequentially transmitted through the probe tip. Simultaneously, a magnetic field (HR) is applied to the contacted region thereby causing a FMR condition in the magnetic film for each pair of (HR, fR) values. RF output signals are transmitted through or reflected from the magnetic film to a RF diode and converted to voltage signals which a controller uses to determine effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening for a sub-mm area. The WUT is moved to preprogrammed locations to enable multiple FMR measurements at each test location.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Guenole Jan, Son Le, Luc Thomas, Santiago Serrano Guisan
  • Publication number: 20200386840
    Abstract: A ferromagnetic resonance (FMR) measurement system is disclosed with a plurality of “m” RF probes and one or more magnetic assemblies to enable a perpendicular-to-plane or in-plane magnetic field (Hap) to be applied simultaneously with a sequence of microwave frequencies (fR) at a plurality of “m” test locations on a magnetic film formed on a whole wafer under test (WUT). A FMR condition occurs in the magnetic film (stack of unpatterned layers or patterned structure) for each pair of (Hap, fR) values. RF input signals are distributed to the RF probes using RF power distribution or routing devices. RF output signals are transmitted through or reflected from the magnetic film to a plurality of “n” RF diodes where 1?n?m, and converted to voltage signals which a controller uses to determine effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening at the predetermined test locations.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Santiago Serrano Guisan, Luc Thomas, Son Le, Guenole Jan
  • Patent number: 10788561
    Abstract: A ferromagnetic resonance (FMR) measurement method is disclosed wherein a magnetic film or stack of layers is patterned into elongated structures having a length along a long axis. A magnetic field (H) is applied in two different orientations with respect to the long axis (in-plane parallel and perpendicular to the long axis) or one orientation may be perpendicular-to-plane. In another embodiment, H is applied parallel to a first set of elongated structures with a long axis in the x-axis direction, and perpendicular to a second set of elongated structures with a long axis in the y-axis direction. From the difference in measured resonance frequency (?fr) (for a fixed magnetic field and sweeping through a range of frequencies) or the difference in measured resonance field (?Hr) (for a fixed microwave frequency and sweeping through a range of magnetic field amplitudes), magnetic saturation Ms is determined using formulas of demagnetizing factors.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: September 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Guenole Jan, Son Le
  • Patent number: 10754000
    Abstract: A ferromagnetic resonance (FMR) measurement system is disclosed with a plurality of “m” RF probes and one or more magnetic assemblies to enable a perpendicular-to-plane or in-plane magnetic field (Hap) to be applied simultaneously with a sequence of microwave frequencies (fR) at a plurality of “m” test locations on a magnetic film formed on a whole wafer under test (WUT). A FMR condition occurs in the magnetic film (stack of unpatterned layers or patterned structure) for each pair of (Hap, fR) values. RF input signals are distributed to the RF probes using RF power distribution or routing devices. RF output signals are transmitted through or reflected from the magnetic film to a plurality of “n” RF diodes where 1?n?m, and converted to voltage signals which a controller uses to determine effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening at the predetermined test locations.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: August 25, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Santiago Serrano Guisan, Luc Thomas, Son Le, Guenole Jan
  • Publication number: 20200266334
    Abstract: A magnetic tunnel junction (MTJ) is disclosed wherein a nitride diffusion barrier (NDB) has a L2/L1/NL or NL/L1/L2 configuration wherein NL is a metal nitride or metal oxynitride layer, L2 blocks oxygen diffusion from an adjoining Hk enhancing layer, and L1 prevents nitrogen diffusion from NL to the free layer (FL) thereby enhancing magnetoresistive ratio and FL thermal stability, and minimizing resistance x area product for the MTJ. NL is the uppermost layer in a bottom spin valve configuration, or is formed on a seed layer in a top spin valve configuration such that L2 and L1 are always between NL and the FL or pinned layer, respectively. In other embodiments, one or both of L1 and L2 are partially oxidized. Moreover, either L2 or L1 may be omitted when the other of L1 and L2 is partially oxidized. A spacer between the FL and L2 is optional.
    Type: Application
    Filed: February 14, 2019
    Publication date: August 20, 2020
    Inventors: Santiago Serrano Guisan, Luc Thomas, Jodi Mari Iwata, Guenole Jan, Vignesh Sundar
  • Publication number: 20200116811
    Abstract: A ferromagnetic resonance (FMR) measurement method is disclosed wherein a magnetic film or stack of layers is patterned into elongated structures having a length along a long axis. A magnetic field (H) is applied in two different orientations with respect to the long axis (in-plane parallel and perpendicular to the long axis) or one orientation may be perpendicular-to-plane. In another embodiment, H is applied parallel to a first set of elongated structures with a long axis in the x-axis direction, and perpendicular to a second set of elongated structures with a long axis in the y-axis direction. From the difference in measured resonance frequency (?fr) (for a fixed magnetic field and sweeping through a range of frequencies) or the difference in measured resonance field (?Hr) (for a fixed microwave frequency and sweeping through a range of magnetic field amplitudes), magnetic saturation Ms is determined using formulas of demagnetizing factors.
    Type: Application
    Filed: October 16, 2018
    Publication date: April 16, 2020
    Inventors: Santiago Serrano Guisan, Luc Thomas, Guenole Jan, Son Le
  • Publication number: 20200049787
    Abstract: A ferromagnetic resonance (FMR) measurement system is disclosed with a plurality of “m” RF probes and one or more magnetic assemblies to enable a perpendicular-to-plane or in-plane magnetic field (Hap) to be applied simultaneously with a sequence of microwave frequencies (fR) at a plurality of “m” test locations on a magnetic film formed on a whole wafer under test (WUT). A FMR condition occurs in the magnetic film (stack of unpatterned layers or patterned structure) for each pair of (Hap, fR) values. RF input signals are distributed to the RF probes using RF power distribution or routing devices. RF output signals are transmitted through or reflected from the magnetic film to a plurality of “n” RF diodes where 1?n?m, and converted to voltage signals which a controller uses to determine effective anisotropy field, linewidth, damping coefficient, and/or inhomogeneous broadening at the predetermined test locations.
    Type: Application
    Filed: August 7, 2018
    Publication date: February 13, 2020
    Inventors: Santiago Serrano Guisan, Luc Thomas, Son Le, Guenole Jan