Patents by Inventor Sara Campbell

Sara Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11990313
    Abstract: A ponderomotive phase plate, also called a laser phase plate or standing wave optical phase plate, has a first minor and a second minor that define an optical cavity. An electron beam passes through a focal spot of the optical cavity. A laser with variable polarization angle of laser light is coupled to the optical cavity. A standing wave of polarized laser light, with an anti-node at the focal spot of the optical cavity, causes variable modulation of the electron beam. The variable modulation of the electron beam is controllable by the variable polarization angle of the laser light. In a transmission electron microscope, an image plane receives the electron beam modulated by the standing wave optical phase plate. An image formed at the image plane is based on the variable polarization angle of the polarized laser light.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: May 21, 2024
    Assignee: The Regents of the University of California
    Inventors: Jeremy J. Axelrod, Carter Turnbaugh, Sara Campbell, Osip Schwartz, Robert M. Glaeser, Holger Mueller
  • Publication number: 20220319803
    Abstract: A ponderomotive phase plate, also called a laser phase plate or standing wave optical phase plate, has a first minor and a second minor that define an optical cavity. An electron beam passes through a focal spot of the optical cavity. A laser with variable polarization angle of laser light is coupled to the optical cavity. A standing wave of polarized laser light, with an anti-node at the focal spot of the optical cavity, causes variable modulation of the electron beam. The variable modulation of the electron beam is controllable by the variable polarization angle of the laser light. In a transmission electron microscope, an image plane receives the electron beam modulated by the standing wave optical phase plate. An image formed at the image plane is based on the variable polarization angle of the polarized laser light.
    Type: Application
    Filed: September 10, 2020
    Publication date: October 6, 2022
    Inventors: Jeremy J. Axelrod, Carter Turnbaugh, Sara Campbell, Osip Schwartz, Robert M. Glaeser, Holger Mueller
  • Publication number: 20220270776
    Abstract: Methods and controllers for reading a quantum state of an atomic object and/or qubit using coherent shelving are provided. A controller causes a first beam of a first wavelength and a second beam of a second wavelength to be incident on the qubit and causes a reading beam to be incident on the qubit. The first wavelength and the second wavelength are configured to couple a state of a qubit space of the qubit to a stable state. The stable state has a lifetime that is longer than a length of time required for performing a reading operation. The first beam and the second beam are generated by at least one manipulation source operated by at least one manipulation source driver of and/or in communication with and/or controlled by the controller.
    Type: Application
    Filed: January 25, 2022
    Publication date: August 25, 2022
    Inventors: Anthony Ransford, Sara Campbell, Bryce Bjork
  • Patent number: 8410729
    Abstract: Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: April 2, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: James Spencer, Robert Noble, Sara Campbell
  • Publication number: 20110298397
    Abstract: Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.
    Type: Application
    Filed: August 2, 2010
    Publication date: December 8, 2011
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Sara Campbell, Robert Noble, James Spencer