Patents by Inventor Sara da Luz Areosa Cleto

Sara da Luz Areosa Cleto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230045205
    Abstract: A method for automated, high throughput cellular library generation is disclosed. The method includes providing a suspension including transformed cells and plating the transformed cells onto solid surfaces of each of at least one reservoir of a reservoir plate. The solid surfaces can include a liquid growth medium. The reservoir plate is incubated, and after cellular growth has occurred on at least one plated surface of the reservoir plate, a series of automatic steps are performed. The automatically-performed steps include adding disaggregation solution to the reservoir plate, applying a mechanical force, such as a rotational force, to the reservoir plate to produce resuspended cells, and/or collecting the resuspended cells.
    Type: Application
    Filed: October 4, 2022
    Publication date: February 9, 2023
    Inventors: Sara da Luz Areosa CLETO, Philip D. WEYMAN
  • Publication number: 20220145288
    Abstract: A HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols is provided. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods for isolating clonal populations derived from individual fungal spores are also provided.
    Type: Application
    Filed: January 26, 2022
    Publication date: May 12, 2022
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Patent number: 11279940
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in successive rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in an iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Kits for performing the methods are also disclosed.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: March 22, 2022
    Assignee: Zymergen Inc.
    Inventors: Stephen Blaskowski, Sara da Luz Areosa Cleto, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier
  • Patent number: 11242524
    Abstract: A HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols is provided. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods for isolating clonal populations derived from individual fungal spores are also provided.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: February 8, 2022
    Assignee: Zymergen Inc.
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Patent number: 11180753
    Abstract: HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods can be carried out within optofluidic devices.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 23, 2021
    Assignee: Zymergen Inc.
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Publication number: 20210292774
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in successive rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in an iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Kits for performing the methods are also disclosed.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 23, 2021
    Inventors: Stephen BLASKOWSKI, Sara da Luz Areosa CLETO, Cameron COATES, Aaron MILLER, Sharon NADEMANEE, Melissa NETWAL, Kedar PATEL, Shawn SZYJKA, Philip WEYMAN, Solomon Henry STONEBLOOM, Colin Scott MAXWELL, Elizabeth Lauren MEIER
  • Publication number: 20210285014
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in one or more rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in a pooled and/or iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Compositions and kits for performing the methods are also disclosed.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 16, 2021
    Inventors: Stephen Blaskowski, Sara da Luz Areosa Cleto, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier
  • Publication number: 20210284993
    Abstract: A HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols is provided. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods for isolating clonal populations derived from individual fungal spores are also provided.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 16, 2021
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Patent number: 11098279
    Abstract: Aspects of this disclosure relate to liquid-based workflows for strain engineering. In strain engineering, cells undergo a modification process to acquire a desired change or changes in the cells. Some of the cells accept the change or changes and some do not. Provided herein are liquid-based methods for selecting the population of cells that have accepted the change or changes. Also provided herein are liquid-based methods for removing markers from transformed cells and liquid-based methods for isolating clonally pure populations of cells.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: August 24, 2021
    Assignee: ZYMERGEN INC.
    Inventors: Sean Poust, Vytas SunSpiral, William Serber, Matthew Jonathan Myers, Sara da Luz Areosa Cleto, Philip Weyman
  • Patent number: 11053506
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in successive rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in an iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Kits for performing the methods are also disclosed.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: July 6, 2021
    Assignee: Zymergen Inc.
    Inventors: Stephen Blaskowski, Sara da Luz Areosa Cleto, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier
  • Patent number: 11053515
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in one or more rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in a pooled and/or iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Compositions and kits for performing the methods are also disclosed.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: July 6, 2021
    Assignee: Zymergen Inc.
    Inventors: Stephen Blaskowski, Sara da Luz Areosa Cleto, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier
  • Publication number: 20210115500
    Abstract: The present invention relates to methods for genotyping microbial host cells that have been subjected to metabolic engineering. The methods provided herein allow detection of genetic edits in the genome of a microbial host cell using PCR-based genome enrichment following appendage of a common priming site. The compositions and methods of the present invention can be used to confirm engineered metabolic diversity as well as ectopic insertions. Kits for performing the methods are also disclosed.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Philip D. WEYMAN, Kedar PATEL, Aaron MILLER, Sara da Luz Areosa CLETO, Kunal MEHTA
  • Patent number: 10961513
    Abstract: Compositions and methods using shufflon recombinases are presented for use in generating genetic diversity in molecules of interest.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: March 30, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy Kuan-Ta Lu, Sara da Luz Areosa Cleto
  • Patent number: 10954511
    Abstract: A HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols is provided. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition. Methods for isolating clonal populations derived from individual fungal spores are also provided.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: March 23, 2021
    Assignee: Zymergen Inc.
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Patent number: 10793609
    Abstract: Provided herein are synthetic pathways from Escherichia coli and Vibrio cholerae genes for the production of new, synthetic nonribosomal peptides, and methods and compositions comprising the same. Some aspects of the present disclosure are directed to modified bacterial cells comprising a compressed biosynthetic pathway that comprises (a) biosynthetic genes obtained from one species encoding enzymes active in the bioassembly of a nonribosomal molecule, (b) biosynthetic genes obtained from another species encoding enzymes active in the bioassembly of a nonribosomal molecule that is different from the nonribosomal molecule of (a). In some embodiments, the biosynthetic genes of (a) are Escherichia coli biosynthetic genes and may include entD gene, an entC gene, an entE gene, an entB gene and an entA gene. In some embodiments, the biosynthetic genes of (b) are Vibrio cholera biosynthetic genes and may include a vibH gene and a vibF gene.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: October 6, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy Kuan-Ta Lu, Sara da Luz Areosa Cleto
  • Publication number: 20200283780
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in successive rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in an iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Kits for performing the methods are also disclosed.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 10, 2020
    Inventors: Stephen BLASKOWSKI, Sara da Luz Areosa CLETO, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier
  • Publication number: 20200283802
    Abstract: The present invention relates to methods for editing the genome of a microbial host cell in one or more rounds of transformation. The method allows the introduction of genetic edits into the genome of a microbial host cell in a pooled and/or iterative fashion that does not require the use of functional counterselection following at least one round of transformation. It can be used to rapidly stack genetic edits in the genome of a microbial host cell. Compositions and kits for performing the methods are also disclosed.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 10, 2020
    Inventors: Stephen BLASKOWSKI, Sara da Luz Areosa Cleto, Cameron Coates, Aaron Miller, Sharon Nademanee, Melissa Netwal, Kedar Patel, Shawn Szyjka, Philip Weyman, Solomon Henry Stonebloom, Colin Scott Maxwell, Elizabeth Lauren Meier
  • Publication number: 20200123535
    Abstract: The present disclosure provides a HTP genomic engineering platform for improving filamentous fungal cells that is computationally driven and integrates molecular biology, automation, and advanced machine learning protocols. This integrative platform utilizes a suite of HTP molecular tool sets to create HTP genetic design libraries, which are derived from, inter alia, scientific insight and iterative pattern recognition.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 23, 2020
    Inventors: Vytas SunSpiral, Jennifer Fredlund, Hassan Abdulla, Paolo Boccazzi, Sean Poust, Sara da Luz Areosa Cleto, Brian Chaikind, Dylan Vaughan, Kenneth S. Bruno, Patrick Westfall, Edyta Szewczyk, Kyle Rothschild-Mancinelli, Arthur Muir Fong, III
  • Publication number: 20200032356
    Abstract: Aspects of this disclosure relate to liquid-based workflows for strain engineering. In strain engineering, cells undergo a modification process to acquire a desired change or changes in the cells. Some of the cells accept the change or changes and some do not. Provided herein are liquid-based methods for selecting the population of cells that have accepted the change or changes. Also provided herein are liquid-based methods for removing markers from transformed cells and liquid-based methods for isolating clonally pure populations of cells.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 30, 2020
    Inventors: Sean Poust, Vytas SunSpiral, William Serber, Matthew Jonathan Myers, Sara da Luz Areosa Cleto, Philip Weyman
  • Publication number: 20190024099
    Abstract: Compositions and methods using shufflon recombinases are presented for use in generating genetic diversity in molecules of interest.
    Type: Application
    Filed: September 7, 2016
    Publication date: January 24, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy Kuan-Ta Lu, Sara da Luz Areosa Cleto