Patents by Inventor Sara L. Yohe

Sara L. Yohe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11661562
    Abstract: A hydrocarbon fluid is disclosed that has a pour point of at most ?30° C., as measured by ASTM D5950, and that comprises at least 99 wt % of naphthenes and paraffins, based on the total weight of the hydrocarbon fluid, wherein the weight ratio of naphthenes to paraffins is at least 1, as measured by GC-MS, and wherein the paraffins consist essentially of isoparaffins, as determined by GC-FID. In addition, preferred uses of said hydrocarbon fluid are disclosed.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 30, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sara L. Yohe, Gregory D. Kitts, Richard J. Saplis, Daniel Bien
  • Patent number: 11015131
    Abstract: A system and methods for manufacturing a base oil stock from a light hydrocarbon stream are provided. An example method includes cracking a light hydrocarbon stream to form an impure olefinic stream, separating water from the impure olefinic stream, and oligomerizing the impure olefinic stream to form a raw oligomer stream. A light olefinic stream from the raw oligomer stream and linear alpha olefins are recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream and hydro-processed to form a hydro-processed stream. They hydro-processed stream is distilled to form the base oil stock.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: May 25, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Matthew S. Ide, Suzzy C. Ho, Guang Cao, Brian M. Weiss, Sara L. Yohe
  • Patent number: 10947464
    Abstract: Systems and methods are provided for integration of use deasphalted resid as a feed for fuels and/or lubricant base stock production with use of the corresponding deasphalter rock for gasification to generate hydrogen and/or fuel for the fuels and/or lubricant production process. The integration can include using hydrogen generated during gasification as a fuel to provide heat for solvent processing and/or using the hydrogen for hydroprocessing of deasphalted oil.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: March 16, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kendall S. Fruchey, Sara K. Green, Anjaneya S. Kovvali, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Patent number: 10808185
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: October 20, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Sara K. Green, Camden N. Henderson
  • Publication number: 20200063043
    Abstract: A system and methods for manufacturing a base oil stock from a light hydrocarbon stream are provided. An example method includes cracking a light hydrocarbon stream to form an impure olefinic stream, separating water from the impure olefinic stream, and oligomerizing the impure olefinic stream to form a raw oligomer stream. A light olefinic stream from the raw oligomer stream and linear alpha olefins are recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream and hydro-processed to form a hydro-processed stream. They hydro-processed stream is distilled to form the base oil stock.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 27, 2020
    Inventors: Matthew S. Ide, Suzzy C. Ho, Guang Cao, Brian M. Weiss, Sara L. Yohe
  • Patent number: 10550341
    Abstract: Methods are provided for producing lubricant base stocks from deasphalted oils formed by sequential deasphalting. The deasphalted oil can be exposed a first deasphalting process using a first solvent that can provide a lower severity of deasphalting and a second deasphalting process using a second solvent that can provide a higher severity of deasphalting. This can result in formation of at least a deasphalted oil and a resin fraction. The resin fraction can represent a fraction that traditionally would have been included as part of a deasphalter rock fraction.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: February 4, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, Doron Levin, Himanshu Gupta, James R. Lattner, Glenn C. Wood, Keith K. Aldous, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Publication number: 20190309231
    Abstract: Systems and methods are provided for reducing the end point of distillate fuel boiling range fractions while reducing or minimizing conversion of the distillate fuel to naphtha or light ends. To perform end point reduction, a distillate boiling range fraction is exposed to a conversion catalyst that has a total surface area of at least 200 m2/g, an average pore size of 12 Angstroms or more, and/or a low acidity, where the conversion catalyst includes a supported Group 8-10 metal, such as a supported Group 8-10 noble metal. Such a conversion catalyst can have improved activity for reducing end point of a distillate fuel fraction while reducing or minimizing conversion relative to 177° C. Performing end point reduction using such a catalyst can allow for increased yields of distillate fuel boiling range products by allowing increased amounts of heavy feed components to be included in the input to a distillate fuel processing train.
    Type: Application
    Filed: March 20, 2019
    Publication date: October 10, 2019
    Inventors: Brandon J. O'Neill, Sara L. Yohe, Ajit B. Dandekar
  • Publication number: 20190016968
    Abstract: Electro-kinetic separation processes for removing solid particles from hydrocracker process streams are provided herein.
    Type: Application
    Filed: June 25, 2018
    Publication date: January 17, 2019
    Inventors: Ivy D. Johnson, Bhupender S. Minhas, Jessica Wittman, Sara L. Yohe, Thomas Bruno
  • Publication number: 20180105761
    Abstract: Systems and methods are provided for producing lubricant basestocks using a process flow that includes a conversion catalyst that can provide a desired improvement in viscosity index at a reduced or minimized amount of feed conversion. An initial processing stage can be used to produce a lubricant boiling range fraction with a reduced or minimized heteroatom content. After a separation, at least a portion of the lubricant boiling range portion can be exposed to a conversion catalyst that has an effective pore size of at least 8.0 Angstroms, a total surface area of at least 200 m2/g, and/or an Alpha value of 20 or less, where the conversion catalyst includes a supported Group 8-10 noble metal. The methods can allow for increased yields of high viscosity index lubricant boiling range products from a process flow for lubricant base stock and/or blend stock production.
    Type: Application
    Filed: September 26, 2017
    Publication date: April 19, 2018
    Inventors: Jason T. Calla, Ajit B. Dandekar, Scott J. Weigel, Darryl D. Lacy, Wenyih F. Lai, Sara L. Yohe
  • Publication number: 20170183576
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey
  • Publication number: 20170183578
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks. The catalytic processing can correspond to processing in at least two stages. The amount of conversion performed in each stage can be varied to produce bright stocks with various properties.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Charles L. Baker, JR., Camden N. Henderson
  • Publication number: 20170183580
    Abstract: Methods are provided for producing lubricant base stocks from deasphalted oils formed by sequential deasphalting. The deasphalted oil can be exposed a first deasphalting process using a first solvent that can provide a lower severity of deasphalting and a second deasphalting process using a second solvent that can provide a higher severity of deasphalting. This can result in formation of at least a deasphalted oil and a resin fraction. The resin fraction can represent a fraction that traditionally would have been included as part of a deasphalter rock fraction.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Mohsen N. Harandi, Doron Levin, Himanshu Gupta, James R. Lattner, Glenn C. Wood, Keith K. Aldous, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Publication number: 20170183577
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Sara K. Green, Camden N. Henderson
  • Publication number: 20170183579
    Abstract: Systems and methods are provided for integration of use deasphalted resid as a feed for fuels and/or lubricant base stock production with use of the corresponding deasphalter rock for gasification to generate hydrogen and/or fuel for the fuels and/or lubricant production process. The integration can include using hydrogen generated during gasification as a fuel to provide heat for solvent processing and/or using the hydrogen for hydroprocessing of deasphalted oil.
    Type: Application
    Filed: December 27, 2016
    Publication date: June 29, 2017
    Inventors: Kendall S. Fruchey, Sara K. Green, Anjaneya S. Kovvali, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Publication number: 20160264780
    Abstract: Finished wax compositions with low aromatic content and high oil contents may be suitable for use in candle applications and/or food packaging and other food grade quality applications despite such high oil contents. Such wax compositions can reduce the need for wax refinement and/or post-processing, such as de-oiling, and increase the ease and efficiency of batch preparation and large volume manufacture.
    Type: Application
    Filed: March 4, 2016
    Publication date: September 15, 2016
    Inventors: Sarvesh K. Agrawal, Sara L. Yohe, Larry E. Hoch, Elizabeth A. Turner, Frank C. Wang