Patents by Inventor Sara M. Bodner

Sara M. Bodner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6673902
    Abstract: The invention discloses a direct interaction between D-type cyclins and a novel myb-like transcription factor, DMP1, which specifically interacts with cyclin D2. The present invention also provides evidence that D-type cyclins regulate gene expression in an RB-independent manner. Also included is DMP1, the transcription factor composed of a central DNA-binding domain containing three atypical myb repeats flanked by highly acidic segments located at its amino- and carboxyterminal ends. The invention includes amino acid sequences coding for DMP1, and DNA and RNA nucleotide sequences that encode the amino acid sequences. A use of DMP1 as a transcription factor is disclosed due to its specificity in binding to oligonucleotides containing the nonamer consensus sequence CCCG(G/T)ATGT. In this aspect of the invention, DMP1 when transfected into mammalian cells, activates the transcription of a reporter gene driven by a minimal promoter containing concatamerized DMP1 binding sites.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: January 6, 2004
    Assignee: St. Jude Children's Research Hospital
    Inventors: Charles J. Sherr, Hiroshi Hirai, Sara M. Bodner, Kazushi Inoue
  • Publication number: 20030028002
    Abstract: The invention discloses a direct interaction between D-type cyclins and a novel myb-like transcription factor, DMP1, which specifically interacts with cyclin D2. The present invention also provides evidence that D-type cyclins regulate gene expression in an RB-independent manner. Also included is DMP1, the transcription factor composed of a central DNA-binding domain containing three atypical myb repeats flanked by highly acidic segments located at its amino- and carboxyterminal ends. The invention includes amino acid sequences coding for DMP1, and DNA and RNA nucleotide sequences that encode the amino acid sequences. A use of DMP1 as a transcription factor is disclosed due to its specificity in binding to oligonucleotides containing the nonamer consensus sequence CCCG(G/T)ATGT. In this aspect of the invention, DMP1 when transfected into mammalian cells, activates the transcription of a reporter gene driven by a minimal promoter containing concatamerized DMP1 binding sites.
    Type: Application
    Filed: June 27, 2001
    Publication date: February 6, 2003
    Inventors: Charles J. Sherr, Hiroshi Hirai, Sara M. Bodner, Kazushi Inoue
  • Patent number: 6303772
    Abstract: The invention discloses a direct interaction between D-type cyclins and a novel myb-like transcription factor, DMP1, which specifically interacts with cyclin D2. The present invention also provides evidence that D-type cyclins regulate gene expression in an RB-independent manner. Also included is DMP1, the transcription factor composed of a central DNA-binding domain containing three atypical myb repeats flanked by highly acidic segments located at its amino- and carboxyterminal ends. The invention includes amino acid sequences coding for DMP1, and DNA and RNA nucleotide sequences that encode the amino acid sequences. A use of DMP1 as a transcription factor is disclosed due to its specificity in binding to oligonucleotides containing the nonamer consensus sequence CCCG(G/T)ATGT. In this aspect of the invention, DMP1 when transfected into mammalian cells, activates the transcription of a reporter gene driven by a minimal promoter containing concatamerized DMP1 binding sites.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: October 16, 2001
    Assignee: St. Jude Children's Research Hospital
    Inventors: Charles J. Sherr, Hiroshi Hirai, Sara M. Bodner, Kazushi Inoue
  • Patent number: 6180763
    Abstract: The invention discloses a direct interaction between D-type cyclins and a novel myb-like transcription factor, DMP1, which specifically interacts with cyclin D2. The present invention also provides evidence that D-type cyclins regulate gene expression in an RB-independent manner. Also included is DMP1, the transcription factor composed of a central DNA-binding domain containing three atypical myb repeats flanked by highly acidic segments located at its amino- and carboxyterminal ends. The invention includes amino acid sequences coding for DMP1, and DNA and RNA nucleotide sequences that encode the amino acid sequences. A use of DMP1 as a transcription factor is disclosed due to its specificity in binding to oligonucleotides containing the nonamer consensus sequence CCCG(G/T)ATGT. In this aspect of the invention, DMP1 when transfected into mammalian cells, activates the transcription of a reporter gene driven by a minimal promoter containing concatamerized DMP1 binding sites.
    Type: Grant
    Filed: September 12, 1997
    Date of Patent: January 30, 2001
    Assignee: St. Jude Children's Research Hospital
    Inventors: Charles J. Sherr, Hiroshi Hirai, Kazushi Inoue, Sara M. Bodner