Patents by Inventor Sarah Shultzaberger

Sarah Shultzaberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124921
    Abstract: Detecting analytes using proximity-induced tagmentation, strand invasion, restriction, or ligation is provided herein. In some examples, detecting an analyte includes coupling a donor recognition probe to a first portion of the analyte. The donor recognition probe includes a first recognition element specific to the first portion of the analyte, a first oligonucleotide corresponding to the first portion, and a transposase coupled to the first recognition element and the first oligonucleotide. An acceptor recognition probe is coupled to a second portion of the analyte. The acceptor recognition probe includes a second recognition element specific to the second portion of the analyte and a second oligonucleotide coupled to the second recognition element and corresponding to the second portion. The transposase is used to generate a reporter polynucleotide including the first and second oligonucleotides. The analyte is detected based on the reporter including comprising the first and second oligonucleotides.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Inventors: Andrew KENNEDY, Sarah SHULTZABERGER, Kayla BUSBY, Colin BROWN, Andrew PRICE, Eric VERMAAS, Rigoberto PANTOJA, Matthew Feeley, Jennifer ZOU, Yong LI, Sepideh ALMASI, Anindita DUTTA, Michelle ALVAREZ
  • Publication number: 20240127906
    Abstract: This disclosure describes methods, non-transitory computer readable media, and systems that can use a computationally efficient model to determine a corrected methylation-level value for a specific sample nucleotide sequence. For instance, the disclosed systems determine a false positive rate and a false negative rate at which a given methylation sequencing assay converts cytosine bases. Based on the determined false positive rate and false negative rate, the disclosed systems determine a corrected methylation-level value that corrects for a bias of the given methylation sequencing assay.
    Type: Application
    Filed: October 10, 2023
    Publication date: April 18, 2024
    Inventors: Qi Wang, Suzanne Rohrback, Sarah Shultzaberger, Rebekah Karadeema, Leslie Beh Yee Ming, James Baye, Colin Brown
  • Publication number: 20220356514
    Abstract: A method for detecting different analytes includes mixing different analytes with sensing probes, wherein at least some of the sensing probes are specific to respective ones of the analytes. The analytes respectively are captured by the sensing probes that are specific to those analytes. Fluorophores respectively are coupled to sensing probes that captured respective analytes. The sensing probes are mixed with beads, wherein the beads are specific to respective ones of the sensing probes, and wherein the beads include different codes identifying the analytes to which those sensing probes are specific. The sensing probes respectively are coupled to beads that are specific to those sensing probes. The beads are identified that are coupled to the sensing probes that captured analytes using at least fluorescence from the fluorophores coupled to those sensing probes. The analytes that are captured are identified.
    Type: Application
    Filed: October 12, 2020
    Publication date: November 10, 2022
    Applicants: ILLUMINA, INC., ILLUMINA SINGAPORE PTE. LTD., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Sarah SHULTZABERGER, Jeffrey BRODIN, Yin Nah TEO, Suzanne ROHRBACK, Rebecca MACLEOD, Rigo PANTOJA, Allen ECKHARDT, Jeffrey FISHER, Xiangyuan YANG, Kaitlin PUGLIESE, Misha GOLYNSKIY, Xiaolin WU, Seth MCDONALD
  • Publication number: 20220290234
    Abstract: Examples provided herein are related to detecting methylcytosine and its derivatives using S-adenosyl-L-methionine analogs (xSAMs). Compositions and methods for performing such detection are disclosed. A target polynucleotide may include cytosine (C) and methylcytosine (mC). The method may include (a) protecting the C in the target polynucleotide from deamination; and (b) after step (a), deaminating the mC in the target polynucleotide to form thymine (T). Protecting the C from deamination may include adding a protective group to the 5 position of the C, e.g., using a methyltransferase enzyme that adds the first protective group from an xSAM.
    Type: Application
    Filed: March 14, 2022
    Publication date: September 15, 2022
    Applicants: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Sarah Shultzaberger, Xiaolin Wu, Eric Brustad, Niall Gormley