Patents by Inventor Sarah Wang

Sarah Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978591
    Abstract: A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: May 7, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Bruce S. Dunn, Sarah H. Tolbert, John Wang, Torsten Brezesinski, George Gruner
  • Patent number: 11965040
    Abstract: The present invention provides modulators of complement activity. Also provided are methods of utilizing such modulators as therapeutics.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: April 23, 2024
    Assignee: RA PHARMACEUTICALS, INC.
    Inventors: Michelle Denise Hoarty, Ketki Ashok Dhamnaskar, Daniel Elbaum, Kristopher Josephson, Kelley Cronin Larson, Zhong Ma, Nathan Ezekiel Nims, Alonso Ricardo, Kathleen Seyb, Guo-Qing Tang, Douglas A. Treco, Zhaolin Wang, Ping Ye, Hong Zheng, Sarah Jacqueline Perlmutter, Robert Paul Hammer
  • Publication number: 20240127906
    Abstract: This disclosure describes methods, non-transitory computer readable media, and systems that can use a computationally efficient model to determine a corrected methylation-level value for a specific sample nucleotide sequence. For instance, the disclosed systems determine a false positive rate and a false negative rate at which a given methylation sequencing assay converts cytosine bases. Based on the determined false positive rate and false negative rate, the disclosed systems determine a corrected methylation-level value that corrects for a bias of the given methylation sequencing assay.
    Type: Application
    Filed: October 10, 2023
    Publication date: April 18, 2024
    Inventors: Qi Wang, Suzanne Rohrback, Sarah Shultzaberger, Rebekah Karadeema, Leslie Beh Yee Ming, James Baye, Colin Brown
  • Patent number: 11935217
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for accurately, efficiently, and flexibly generating harmonized digital images utilizing a self-supervised image harmonization neural network. In particular, the disclosed systems can implement, and learn parameters for, a self-supervised image harmonization neural network to extract content from one digital image (disentangled from its appearance) and appearance from another from another digital image (disentangled from its content). For example, the disclosed systems can utilize a dual data augmentation method to generate diverse triplets for parameter learning (including input digital images, reference digital images, and pseudo ground truth digital images), via cropping a digital image with perturbations using three-dimensional color lookup tables (“LUTs”).
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: March 19, 2024
    Assignee: Adobe Inc.
    Inventors: He Zhang, Yifan Jiang, Yilin Wang, Jianming Zhang, Kalyan Sunkavalli, Sarah Kong, Su Chen, Sohrab Amirghodsi, Zhe Lin
  • Publication number: 20240081941
    Abstract: Ultrasound imaging is a non-invasive, non-radioactive, and low cost technology for diagnosis and identification of implantable medical devices in real time. Developing new ultrasound activated coatings is important to broaden the utility of in vivo marking by ultrasound imaging. Ultrasound responsive macro-phase segregated micro-composite thin films were developed to be coated on medical devices composed of multiple materials and with multiple shapes and varying surface area. The macro-phase segregated films having silica micro-shells in polycyanoacrylate produces strong color Doppler signals with the use of a standard clinical ultrasound transducer. Electron microscopy showed a macro-phase separation during slow curing of the cyanoacrylate adhesive, as air-filled silica micro-shells were driven to the surface of the film. The air sealed in the hollow space of the silica shells acted as an ultrasound contrast agent and echo decorrelation of air exposed to ultrasound waves produces color Doppler signals.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Inventors: Jian Yang, Alexander Liberman, James Wang, Christopher Barback, Natalie Mendez, Erin Ward, Sarah Blair, Andrew C. Kummel, Tsai-Wen Sung, William C. Trogler
  • Patent number: 11926827
    Abstract: Provided herein are MAPT RNAi agents and compositions comprising a MAPT RNAi agent. Also provided herein are methods of using the MAPT RNAi agents or compositions comprising a MAPT RNAi agent for reducing MAPT expression and/or treating tauopathy in a subject.
    Type: Grant
    Filed: May 3, 2023
    Date of Patent: March 12, 2024
    Assignee: ELI LILLY AND COMPANY
    Inventors: Barbara Calamini, Sarah Katharina Fritschi, Rebecca Ruth Miles, Andrew Peter McCarthy, Douglas Raymond Perkins, Keith Geoffrey Phillips, Kaushambi Roy, Isabel Cristina Gonzalez Valcarcel, Jibo Wang, Shih-Ying Wu, Jeremy S. York
  • Publication number: 20060172422
    Abstract: Techniques for computerized electroporation. An electroporation apparatus may be controlled according to one of a plurality of previously-saved, user-defined processing protocols. A processing log associated with a processing protocol may be generated, and the processing log may include patient or sample specific information. The processing log or a summary of the processing log may be exported to a user. Interactive instructions may be provided to a user. Those instructions may correspond to one or more steps of a processing protocol.
    Type: Application
    Filed: November 30, 2005
    Publication date: August 3, 2006
    Inventors: Sergey Dzekunov, Sarah Wang, Arthur Hanson