Patents by Inventor Sarbeswar Sahoo

Sarbeswar Sahoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11162169
    Abstract: Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: November 2, 2021
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael C. Kautzky, Sarbeswar Sahoo, Justin Brons, Jie Gong, Yuhang Cheng
  • Patent number: 11107499
    Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: August 31, 2021
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
  • Patent number: 10971180
    Abstract: A method of forming a near field transducer (NFT), the method including the steps of depositing a primary material; and implanting a secondary element, wherein both the primary material and the secondary element are chosen such that the primary material is densified via implantation of the secondary element.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: April 6, 2021
    Assignee: Seagate Technology LLC
    Inventors: Sethuraman Jayashankar, Sarbeswar Sahoo
  • Patent number: 10964347
    Abstract: A device including a near field transducer, the near field transducer including gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), vanadium (V), zinc (Zn), chromium (Cr), iron (Fe), lithium (Li), nickel (Ni), platinum (Pt), sodium (Na), strontium (Sr), calcium (Ca), yttrium (Y), thorium (Th), beryllium (Be), thulium (Tm), erbium
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: March 30, 2021
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Justin Glen Brons, Steve C. Riemer, Jie Gong, Michael Allen Seigler
  • Publication number: 20210090774
    Abstract: Methods of forming a layer of magnetic material on a substrate, the method including: configuring a substrate in a chamber; controlling the temperature of the substrate at a substrate temperature, the substrate temperature being at or below about 250° C.; and introducing one or more precursors into the chamber, the one or more precursors including: cobalt (Co), nickel (Ni), iron (Fe), or combinations thereof, wherein the precursors chemically decompose at the substrate temperature, and wherein a layer of magnetic material is formed on the substrate, the magnetic material including at least a portion of the one or more precursors, and the magnetic material having a magnetic flux density of at least about 1 Tesla (T).
    Type: Application
    Filed: August 11, 2020
    Publication date: March 25, 2021
    Inventors: Sarbeswar Sahoo, Meng Zhu, Michael C. Kautzky, Gregory Girolami, John Abelson, Pengyi Zhang, Shaista Babar
  • Publication number: 20200224307
    Abstract: Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
    Type: Application
    Filed: December 24, 2019
    Publication date: July 16, 2020
    Inventors: Tong Zhao, Michael C. Kautzky, Sarbeswar Sahoo, Justin Brons, Jie Gong, Yuhang Cheng
  • Publication number: 20200227086
    Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
    Type: Application
    Filed: November 19, 2019
    Publication date: July 16, 2020
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
  • Patent number: 10699732
    Abstract: Devices that include a write pole; a near field transducer (NFT) that includes a peg and a disk, wherein the peg is at the ABS of the device; and a diffusion barrier layer positioned between the write pole and the peg of the NFT, the diffusion barrier layer including metals, nitrides, oxides, carbides, silicides, or amorphous material.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: June 30, 2020
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Scott Franzen, Michael Seigler, James Wessel, Tong Zhao, John Duda, Sarbeswar Sahoo, Hui Brickner, Michael Kautzky
  • Patent number: 10699740
    Abstract: A device including a near field transducer, the near field transducer including gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), vanadium (V), zinc (Zn), chromium (Cr), iron (Fe), lithium (Li), nickel (Ni), platinum (Pt), sodium (Na), strontium (Sr), calcium (Ca), yttrium (Y), thorium (Th), beryllium (Be), thulium (Tm), erbium
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: June 30, 2020
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Justin Glen Brons, Steve C. Riemer, Jie Gong, Michael Allen Seigler
  • Publication number: 20200118587
    Abstract: Devices that include a near field transducer (NFT) including a crystalline plasmonic material having crystal grains and grain boundaries; and nanoparticles disposed in the crystal grains, on the grain boundaries, or some combination thereof, wherein the nanoparticles are oxides of, lanthanum (La), barium (Ba), strontium (Sr), erbium (Er), hafnium (Hf), germanium (Ge), or combinations thereof; nitrides of zirconium (Zr), niobium (Nb), or combinations thereof; or carbides of silicon (Si), aluminum (Al), boron (B), zirconium (Zr), tungsten (W), titanium (Ti), niobium (Nb), or combinations thereof.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: Tong Zhao, Justin Brons, Steven C. Riemer, Michael C. Kautzky, Xiaoyue Huang, Sarbeswar Sahoo
  • Patent number: 10580440
    Abstract: Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: March 3, 2020
    Assignee: Seagate Technology LLC
    Inventors: Sarbeswar Sahoo, Martin Blaber, Hui Brickner, Tong Zhao, Yuhang Cheng, John Duda, Tae-Woo Lee
  • Patent number: 10519540
    Abstract: Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: December 31, 2019
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael C. Kautzky, Sarbeswar Sahoo, Justin Brons, Jie Gong, Yuhang Cheng
  • Patent number: 10510364
    Abstract: Devices that include a near field transducer (NFT) including a crystalline plasmonic material having crystal grains and grain boundaries; and nanoparticles disposed in the crystal grains, on the grain boundaries, or some combination thereof, wherein the nanoparticles are oxides of, lanthanum (La), barium (Ba), strontium (Sr), erbium (Er), hafnium (Hf), germanium (Ge), or combinations thereof; nitrides of zirconium (Zr), niobium (Nb), or combinations thereof; or carbides of silicon (Si), aluminum (Al), boron (B), zirconium (Zr), tungsten (W), titanium (Ti), niobium (Nb), or combinations thereof.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 17, 2019
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Justin Brons, Steven C. Riemer, Michael C. Kautzky, Xiaoyue Huang, Sarbeswar Sahoo
  • Patent number: 10482914
    Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: November 19, 2019
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
  • Publication number: 20190164570
    Abstract: Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 30, 2019
    Inventors: Sarbeswar Sahoo, Martin Blaber, Hui Brickner, Tong Zhao, Yuhang Cheng, John Duda, Tae-Woo Lee
  • Publication number: 20190153590
    Abstract: Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 23, 2019
    Inventors: Tong Zhao, Michael C. Kautzky, Sarbeswar Sahoo, Justin Brons, Jie Gong, Yuhang Cheng
  • Patent number: 10217482
    Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: yttrium (Y), tin (Sn), iron (Fe), copper (Cu), carbon (C), holmium (Ho), gallium (Ga), silver (Ag), ytterbium (Yb), chromium (Cr), tantalum (Ta), iridium (Ir), zirconium (Zr), yttrium (Y), scandium (Sc), cobalt (Co), silicon (Si), nickel (Ni), molybdenum (Mo), niobium (Nb), palladium (Pd), titanium (Ti), rhenium (Re), osmium (Os), platinum (Pt), aluminum (Al), ruthenium (Ru), rhodium (Rh), vanadium (V), germanium (Ge), tin (Sn), magnesium (Mg), iron (Fe), copper (Cu), tungsten (W), hafnium (Hf), carbon (C), boron (B), holmium (Ho), antimony (Sb), gallium (Ga), manganese (Mn), silver (Ag), indium (In), bismuth (Bi), zinc (Zn), ytterbium (Yb), and combinations thereof.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 26, 2019
    Assignee: Seagate Technology LLC
    Inventors: Vijay Karthik Sankar, Tong Zhao, Yongjun Zhao, Michael C. Kautzky, Hui Brickner, Sarbeswar Sahoo
  • Patent number: 10192574
    Abstract: Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: January 29, 2019
    Assignee: Seagate Technology LLC
    Inventors: Sarbeswar Sahoo, Martin Blaber, Hui Brickner, Tong Zhao, Yuhang Cheng, John Duda, Tae-Woo Lee
  • Patent number: 10190210
    Abstract: Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 29, 2019
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael C. Kautzky, Sarbeswar Sahoo, Justin Brons, Jie Gong, Yuhang Cheng
  • Publication number: 20180366153
    Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
    Type: Application
    Filed: April 13, 2018
    Publication date: December 20, 2018
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler