Patents by Inventor Sarly Pino

Sarly Pino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9186723
    Abstract: A method of producing a Metal Matrix Composite (MMC) with uniform surface layers is disclosed. First, a low volume fraction compressible discontinuous ceramic fiber paper is set on the base of a mold cavity. Next, an array of reinforcement preform(s) (1×1, 2×2, 4×4, 2×8, etc) are set in the mold on top of the ceramic fiber paper. A top layer of ceramic fiber paper is next placed on the array of reinforcement preforms and the mold cover seals the mold. The reinforcement porous preform(s) are held to the center of the mold cavity when the sealed mold compresses the top and bottom layers of ceramic fiber paper. The ceramic fiber paper exerts an equal and opposite force on the reinforcement preform(s) within the closed mold centering the preform(s) within the mold cavity. The mold cavity is next infiltrated under pressure with molten metal allowing for metal to penetrate into any open porosity of the ceramic fiber paper, reinforcement preform(s), and areas within the mold cavity that contain open spaces.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: November 17, 2015
    Assignee: CPS technologies Corp
    Inventors: Richard Adams, Sarly Pino
  • Publication number: 20150096708
    Abstract: A method of producing a Metal Matrix Composite (MMC) with uniform surface layers is disclosed. First, a low volume fraction compressible discontinuous ceramic fiber paper is set on the base of a mold cavity. Next, an array of reinforcement preform(s) (1×1,2×2, 4×4, 2×8, etc) are set in the mold on top of the ceramic fiber paper. A top layer of ceramic fiber paper is next placed on the array of reinforcement preforms and the mold cover seals the mold. The reinforcement porous preform(s) are held to the center of the mold cavity when the sealed mold compresses the top and bottom layers of ceramic fiber paper. The ceramic fiber paper exerts an equal and opposite force on the reinforcement preform(s) within the closed mold centering the preform(s) within the mold cavity. The mold cavity is next infiltrated under pressure with molten metal allowing for metal to penetrate into any open porosity of the ceramic fiber paper, reinforcement preform(s), and areas within the mold cavity that contain open spaces.
    Type: Application
    Filed: June 18, 2014
    Publication date: April 9, 2015
    Inventors: Richard Adams, Sarly Pino