Patents by Inventor Sascha Kruger

Sascha Kruger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10563862
    Abstract: The nozzle for injecting a reagent into a combustor has a body with a cavity, an occlusion for the cavity, a slit for injecting the reagent, at least one intermediate disc between the body and the occlusion, the at least one intermediate disc having at least one opening for the passage of the reagent, wherein the nozzle further has a first slit between the body and the at least one intermediate disc, a second slit between the occlusion and the at least one intermediate disc (56), and/or at least one slit having at least one corrugated border defining a variable size slit between a minimum size and a maximum size.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: February 18, 2020
    Assignee: General Electric Company
    Inventors: Sascha Krüger, Jörg Krüger, Oliver Gohlke
  • Publication number: 20180017252
    Abstract: The nozzle for injecting a reagent into a combustor has a body with a cavity, an occlusion for the cavity, a slit for injecting the reagent, at least one intermediate disc between the body and the occlusion, the at least one intermediate disc having at least one opening for the passage of the reagent, wherein the nozzle further has a first slit between the body and the at least one intermediate disc, a second slit between the occlusion and the at least one intermediate disc (56), and/or at least one slit having at least one corrugated border defining a variable size slit between a minimum size and a maximum size.
    Type: Application
    Filed: January 12, 2016
    Publication date: January 18, 2018
    Inventors: Sascha KRÜGER, J?rg KRÜGER, Oliver GOHLKE
  • Patent number: 7652468
    Abstract: The invention relates to a device and a method for correction of the position (x) of a field sensor (4) measured by means of a magnetic localization device. External field distortions, such as caused for example by the rotating components (1a, 1b) of a computer tomograph (1), are then determined with the help of reference sensor (3) placed at a known position. It is possible to deduce, for example, the current angle of rotation (?) of the computer tomograph (1) from the measurement signals of the reference sensor (3). Based on an empirically determined correction (?(x, ?)), the uncorrected determined positions (x) of the field sensor (4) can then be converted to corrected positions (x?) in relation to the field distortions. The field generator (2) and the reference sensor (3) are preferably fastened to the gantry in order to eliminate the dependency of the field distortions on an inclination of the gantry.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: January 26, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Sascha Kruger, Hans-Aloys Wischmann, Holger Timinger, Jorg Sabczynski, Jorn Borgert
  • Publication number: 20080208022
    Abstract: The invention relates to a modified Laser Optical Feedback Tomography sensor (10) which comprises an evaluator (16) for the determination of an object velocity (vz) relative to the sensor (10). The primary optical frequency (fo) of light emitted by a laser (11) is shifted by a first frequency shift F in a frequency shifter (13) and focused into an investigation region (3). A moving object (2) in said region produces an additional Doppler frequency shift ?F in the light sent back from the investigation region (3) which is re-injected into the laser (11). Resulting intensity oscillations of the laser (11), which critically depend on the shifted frequency of the re-injected light, are detected by a detector (15). Finally, the evaluator (16) coupled to the detector (15) determines from the observed oscillations the Doppler frequency shift ?F and therefrom the moving velocity (Vz) of the object (2).
    Type: Application
    Filed: June 1, 2006
    Publication date: August 28, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Sascha Kruger, Tim Nielsen
  • Publication number: 20080157755
    Abstract: The invention relates to a device and a method for correction of the position (x) of a field sensor (4) measured by means of a magnetic localization device. External field distortions, such as caused for example by the rotating components (1a, 1b) of a computer tomograph (1), are then determined with the help of reference sensor (3) placed at a known position. It is possible to deduce, for example, the current angle of rotation (?) of the computer tomograph (1) from the measurement signals of the reference sensor (3). Based on an empirically determined correction (?(x, ?)), the uncorrected determined positions (x) of the field sensor (4) can then be converted to corrected positions (x?) in relation to the field distortions. The field generator (2) and the reference sensor (3) are preferably fastened to the gantry in order to eliminate the dependency of the field distortions on an inclination of the gantry.
    Type: Application
    Filed: February 11, 2005
    Publication date: July 3, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Sascha Kruger, Hans-Aloys Wischmann, Holger Timinger, Jorg Sabczynski, Jorn Borgert
  • Publication number: 20080058647
    Abstract: The invention relates to a facility that can be used, in particular, to measure the flow conditions in a blood vessel. The facility comprises a catheter (16) having a bundle (15) of optical waveguides that connects control and measurement facilities (20) outside the body with an optical unit (10) at the catheter tip. The light (?K) generated by a cavitation light laser source (30) is beamed via the catheter (16) and the optical unit (10) into a focus region (2) in the vessel lumen, where it generates cavitation bubbles (3). The movement of the cavitation bubbles (3) with the blood flow is determined by the particle-measuring unit (20) that is based, for example, on phase-Doppler anemometry and/or the Doppler shift. As a result of suitable design of the optical unit (10), the focus region (2) can be displaced as desired radially and rotationally inside the vessel so that a vessel cross section can be scanned in a spatially resolved way.
    Type: Application
    Filed: July 13, 2004
    Publication date: March 6, 2008
    Inventors: Sascha Kruger, Jorn Borgert
  • Publication number: 20070197905
    Abstract: The invention relates to a navigation system for navigating a catheter (3) in a vascular system (10), in which the current spatial position of the catheter (3) is continually measured by a locating device (2). The temporal sequence of the position signals obtained in this way is subjected to a filtering operation in order to compensate for cyclic intrinsic movements of the vascular system which are caused for example by the heartbeat. The filtering may comprise the suppression of amplitude maxima in the frequency spectrum at the heartbeat frequency. Furthermore, the filtering may comprise the calculation of a center of the trajectory in time windows of the length of the heartbeat.
    Type: Application
    Filed: May 6, 2004
    Publication date: August 23, 2007
    Inventors: Holger Timinger, Jorn Borgert, Sascha Kruger
  • Publication number: 20070167738
    Abstract: The invention relates to a device and a method for navigating a catheter in the vessel system or an intervention needle in an organ of a patient that is subject to a spontaneous movement due to heartbeat and/or respiration. In this connection, a movement model (11) that describes the displacement of points in the vessel system with respect to a reference phase (E0) of the spontaneous movement is kept ready in the memory of a data processing device (10). The spatial positions and orientations of the instrument (4) measured by a locating device (2) in the vessel system of the patient (3) and also the ECG values (E) recorded in parallel therewith are converted by the data processing device (10) with the aid of the movement model (11) into a movement-compensated position (r+?) of the instrument that can then be displayed in a static vessel or organ map (12). The movement model (11) can be obtained from a series of three-dimensional recordings of the vessel system.
    Type: Application
    Filed: January 7, 2005
    Publication date: July 19, 2007
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Holger Timinger, Sascha Kruger, Jorn Borgert
  • Publication number: 20070135713
    Abstract: The invention relates to a catheter system comprising a first, outer catheter (1) and a second catheter element contained in it, which can particularly be a guide wire (2). A respective active localizer (4, 5) is placed on the first and on the second catheter element (1, 2), for example sensors of a magnetic tracking system. The first catheter element (1) preferably has a fixing device (3), by means of which it can be fixed relative to the vascular system (7). If the guide wire (2) is, for example, to be navigated through a stenosis (6), the position of its localizer (5) relative to the localizer (4) is measured on the catheter element at rest (1), so that its position relative to the vessel (7) is known. Since interference factors such as organ movement balance each other during the measurement of the relative position of the localizers (4, 5), the navigation can be carried out with very high accuracy.
    Type: Application
    Filed: February 10, 2005
    Publication date: June 14, 2007
    Applicant: KONINKLIJKE PHILIPS ELECTRONIC, N.V.
    Inventors: Jorn Borgert, Sascha Kruger, Holger Timinger
  • Publication number: 20070055141
    Abstract: The invention relates to a navigation system for guiding a catheter in a patient's vascular system, where the spatial position of the catheter and its orientation are continually measured by a locating device. The resulting trajectory (T0) of the catheter contains movement artefacts on account of the heartbeat. In order to suppress said movement artefacts, the electrocardiogram (ECG) is recorded in parallel, and the position and orientation signals are suppressed during phases of strong heart movement (QRS peak). Preferably, extrapolation of the compensated trajectory (Tc) is carried out in the gaps arising as a result of signal suppression.
    Type: Application
    Filed: May 6, 2004
    Publication date: March 8, 2007
    Inventors: Sascha Kruger, Jorn Borgert, Holger Timinger
  • Publication number: 20070016005
    Abstract: The invention relates to an apparatus and a method for recording the movement, caused in particular by breathing, of organs of the body such as the heart (9) for example. A part (3) of the diaphragm (10) is recorded by means of an X-ray device or an ultrasound device and the current position of the diaphragm is detected in the resulting image. Information about the associated position of other internal organs can be obtained from the position of the diaphragm with the aid of a model. This information can in turn be used, in a navigation system for a catheter, to set the spatial coordinates of the latter relative to the vascular system.
    Type: Application
    Filed: May 6, 2004
    Publication date: January 18, 2007
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Holger Timinger, Sascha Kruger, Hans-Aloy Wischmann, Jorn Borgert, Jorg Sabczynski, Volker Rasche
  • Publication number: 20060241395
    Abstract: The invention relates to a device and a method for locating an instrument, such as a catheter (104) for example, within a body (106). The catheter (104) has a number of light guides into which there is passed an NIR radiation pulse (102) from a laser (101). The NIR radiation is emitted by scattering end sections (105) of the light guides into the body volume (106) and detected outside the body by means of cameras (107a, 107b, 107c). Scattered photons are preferably excluded by means of a temporally selective amplification. The location of the catheter (104) can be reconstructed stereoscopically on the basis of the camera images.
    Type: Application
    Filed: March 3, 2004
    Publication date: October 26, 2006
    Inventors: Sascha Kruger, Jorn Borgert
  • Publication number: 20060187533
    Abstract: The invention relates to a method for the selective amplification of signal photons of a signal pulse (4) in a desired time window. For this purpose, the signal photons (4) are passed through an activated amplification medium (1), where amplification takes place by induced emissions. The amplification is terminated at a desired point in time by the irradiation of a quench pulse (7). Optionally, the start of amplification can be determined by an irradiated pump pulse (8). Emissions that are not correlated with the signal pulse (4) can be suppressed by means of a spectral filter (2). Furthermore, an intensity filter such as a saturable absorber (3) can suppress unamplified fractions of the emission (5) leaving the amplification medium (1). Applications of the method include medical optical imaging and tomography by transillumination with time-gated detection of ballistic photons.
    Type: Application
    Filed: March 3, 2004
    Publication date: August 24, 2006
    Inventors: Tim Nielsen, Sascha Kruger