Patents by Inventor Sascha Noormann
Sascha Noormann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8338627Abstract: A process for producing epoxide, the process including contacting an organic phase including at least one halohydrin(s) with at least one aqueous phase including a base in a plug-flow mixer/reactor system to disperse the organic phase in the aqueous phase via a mixing device imparting a power-to-mass ratio of at least 0.2 W/kg to convert at least a portion of the at least one halohydrin to an epoxide.Type: GrantFiled: July 30, 2009Date of Patent: December 25, 2012Assignee: Dow Global Technologies LLCInventors: William W. Fan, Christian D. Kneupper, Sascha Noormann, Ranate Patrascu, Bruce D. Hook, Charles W. Lipp, Michael D. Cloeter, Heinz Groenewald
-
Patent number: 8298500Abstract: A process and apparatus are disclosed for the purification of epichlorohydrin. The process includes distilling and/or fractionating a feed stream containing epichlorohydrin, dichlorohydrin(s), and one or more other substances, subjecting at least a portion of the liquid phase effluent to a dichlorohydrin dehydrochlorination process for converting residual dichlorohydrin(s) in the liquid phase effluent to epichlorohydrin, and recovering purified epichlorohydrin from the vapor phase effluent in which the distillation/fractionation pressure and/or temperature of step (1) is adjusted to retain at least 5 weight-percent epichlorohydrin in the liquid phase effluent. The apparatus for making purified epichlorohydrin includes a dehydrochlorination apparatus, a first liquid-vapor contacting apparatus, and a second liquid-vapor contacting apparatus connected to the dehydrochlorination apparatus for recycling a distillate to the dehydrochlorination apparatus.Type: GrantFiled: January 22, 2009Date of Patent: October 30, 2012Assignee: Dow Global Technologies LLCInventors: Christian D. Kneupper, Perry S. Basile, William W. Fan, Sascha Noormann
-
Patent number: 7985867Abstract: A process for producing epoxides, the process including: (a) feeding at least one aqueous alkali and at least one halohydrin to a reactive distillation column, wherein the reactive distillation column includes a feed zone, a top zone disposed above the feed zone, and a bottom zone disposed below the feed zone; (b) concurrently in the reactive distillation column: (i) reacting at least a portion of the halohydrin with the alkali to form an epoxide; and (ii) stripping water and the epoxide from a basic aqueous residue; (c) recovering the water and the epoxide from the reactive distillation column as an overheads fraction; (d) condensing and phase separating the overheads fraction to form an organic overheads fraction including the epoxide and an aqueous overheads fraction including water; and (e) maintaining a liquid holdup per plate in the feed zone at a residence time of 10 seconds or less.Type: GrantFiled: July 23, 2009Date of Patent: July 26, 2011Assignee: Dow Global Technologies LLCInventors: William W. Fan, Christian D. Kneupper, Sascha Noormann, Renate Patrascu
-
Patent number: 7982061Abstract: A process for producing epoxides, the process including: (a) feeding at least one aqueous alkali and at least one halohydrin to a reactive distillation column; (b) concurrently in the reactive distillation column: (i) reacting at least a portion of the halohydrin with the alkali to form an epoxide; and (ii) stripping water and the epoxide from a basic aqueous residue; (c) recovering the water and the epoxide from the reactive distillation column as an overheads fraction; and, (d) condensing and phase separating the overheads fraction at a temperature of 50° C. or less to form an organic overheads fraction including the epoxide and an aqueous overheads fraction including water.Type: GrantFiled: July 23, 2009Date of Patent: July 19, 2011Inventors: William W. Fan, Christian D. Kneupper, Sascha Noormann, Renate Patrascu
-
Publication number: 20110028766Abstract: The present invention relates to a process for converting at least one multihydroxylated-aliphatic hydrocarbon and/or an ester thereof to at least one chlorohydrin and/or an ester thereof, comprising at least one reaction step in which the multihydroxylated-aliphatic hydrocarbon and/or ester thereof is contacted with hydrogen chloride under reaction conditions to produce the chlorohydrin and/or ester thereof, followed by at least one downstream processing step in which the effluents of the reaction step are processed, wherein the downstream processing step is performed in such conditions that the effluents containing the chlorohydrin and/or ester thereof are kept at a temperature of less than 120° C. The invention allows to minimize the liberation of hydrogen chloride from the products of the hydrochlorination reaction, hence reducing the corrosion of the downstream equipment and reducing the need to use costly corrosion resistant materials.Type: ApplicationFiled: March 18, 2009Publication date: February 3, 2011Inventors: John R. Briggs, Bruce D. Hook, William J. Kruper Jr., Anil Mehta, Robert M. Alvarado, Sascha Noormann, Perry S. Basile
-
Publication number: 20100331555Abstract: A process and apparatus are disclosed for the purification of epichlorohydrin. The process includes distilling and/or fractionating a feed stream containing epichlorohydrin, dichlorohydrin(s), and one or more other substances, subjecting at least a portion of the liquid phase effluent to a dichlorohydrin dehydrochlorination process for converting residual dichlorohydrin(s) in the liquid phase effluent to epichlorohydrin, and recovering purified epichlorohydrin from the vapor phase effluent in which the distillation/fractionation pressure and/or temperature of step (1) is adjusted to retain at least 5 weight-percent epichlorohydrin in the liquid phase effluent. The apparatus for making purified epichlorohydrin includes a dehydrochlorination apparatus, a first liquid-vapor contacting apparatus, and a second liquid-vapor contacting apparatus connected to the dehydrochlorination apparatus for recycling a distillate to the dehydrochlorination apparatus.Type: ApplicationFiled: January 22, 2009Publication date: December 30, 2010Inventors: Christian D. Kneupper, Perry S. Basile, William W. Fan, Sascha Noormann
-
Publication number: 20100152499Abstract: The present invention relates to a process for converting at least one multihydroxylated-aliphatic hydrocarbon and/or an ester thereof to at least one chlorohydrin and/or an ester thereof, comprising at least one reaction step in which the multihydroxylated-aliphatic hydrocarbon and/or ester thereof is contacted with hydrogen chloride under reaction conditions to produce the chlorohydrin and/or ester thereof, followed by at least one downstream processing step in which the effluents of the reaction step are processed, wherein the downstream processing step is performed in such conditions that the effluents containing the chlorohydrin and/or ester thereof are kept at a temperature of less than 12O° C. The invention allows to minimize the liberation of hydrogen chloride from the products of the hydrochlorination reaction, hence reducing the corrosion of the downstream equipment and reducing M the need to use costly corrosion resistant materials.Type: ApplicationFiled: April 11, 2008Publication date: June 17, 2010Inventors: John R. Briggs, Bruce D. Hook, William J. Kruper, JR., Anil Mehta, Robert M. Alvarado, Sascha Noormann, Perry S. Basile
-
Publication number: 20100029959Abstract: A process for producing epoxides, the process including: (a) feeding at least one aqueous alkali and at least one halohydrin to a reactive distillation column, wherein the reactive distillation column includes a feed zone, a top zone disposed above the feed zone, and a bottom zone disposed below the feed zone; (b) concurrently in the reactive distillation column: (i) reacting at least a portion of the halohydrin with the alkali to form an epoxide; and (ii) stripping water and the epoxide from a basic aqueous residue; (c) recovering the water and the epoxide from the reactive distillation column as an overheads fraction; (d) condensing and phase separating the overheads fraction to form an organic overheads fraction including the epoxide and an aqueous overheads fraction including water; and (e) maintaining a liquid holdup per plate in the feed zone at a residence time of 10 seconds or less.Type: ApplicationFiled: July 23, 2009Publication date: February 4, 2010Applicant: DOW GLOBAL TECHNOLOGIES INC.Inventors: William W. Fan, Christian D. Kneupper, Sascha Noormann, Renate Patrascu
-
Publication number: 20100029958Abstract: A process for producing epoxides, the process including: (a) feeding at least one aqueous alkali and at least one halohydrin to a reactive distillation column; (b) concurrently in the reactive distillation column: (i) reacting at least a portion of the halohydrin with the alkali to form an epoxide; and (ii) stripping water and the epoxide from a basic aqueous residue; (c) recovering the water and the epoxide from the reactive distillation column as an overheads fraction; and, (d) condensing and phase separating the overheads fraction at a temperature of 50° C. or less to form an organic overheads fraction including the epoxide and an aqueous overheads fraction including water.Type: ApplicationFiled: July 23, 2009Publication date: February 4, 2010Applicant: DOW GLOBAL TECHNOLOGIES INC.Inventors: William W. Fan, Christian D. Kneupper, Sascha Noormann, Renate Patrascu