Patents by Inventor Sascha Schieke

Sascha Schieke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240036011
    Abstract: This disclosure relates to the field of corrosion and erosion monitoring of pipes and vessels. More specifically, this disclosure relates to a system and method for corrosion and erosion monitoring of pipes and vessels, where the system/method combines ultrasonic thickness monitoring using longitudinal waves with ultrasonic area monitoring using one or more guided waves, whereby representative thickness measurements are complemented by an area monitoring feature to detect localized corrosion/erosion in between representative thickness measurement locations. In another embodiment, a system and method for optimized asset health monitoring that includes an analytics solution is disclosed.
    Type: Application
    Filed: December 8, 2020
    Publication date: February 1, 2024
    Inventors: Sascha Schieke, Daniel Lutolf-Carroll
  • Publication number: 20240036012
    Abstract: An ultrasonic transducer for high temperature application forms part of ultrasonic wall thickness measurement system. The ultrasonic transducer has a modular design. The ultrasonic transducer has a modular design which enables the selection of piezoelectric element type based on field applications without changing the manufacturing process and redesigning of other components. A temperature sensor can be provided as part of the ultrasonic transducer. Methods of assembly are also provided.
    Type: Application
    Filed: December 21, 2021
    Publication date: February 1, 2024
    Inventors: Ke Wang, Dumitru Rosca, Sascha Schieke
  • Publication number: 20230064270
    Abstract: This disclosure relates to the monitoring and detection of corrosion and/or erosion of pipes, vessels, and other components in an industrial facility. The monitoring system may comprise of an arrangement of guided wave (GW) transducers and a longitudinal wave (LW) transducer affixed to the piping component to collectively measure for localized corrosion of the piping component without necessarily requiring a thickness map. The monitoring system may use an intelligent amplified multiplexer/switch to control the operation of the transducers that may be controlled and operated to generate waves in the kilohertz range and megahertz range with the same hardware.
    Type: Application
    Filed: March 1, 2021
    Publication date: March 2, 2023
    Applicant: Molex, LLC
    Inventors: Sascha SCHIEKE, Alexander S. CHERNYSHOV, Mariusz KLOZA, Raymundo VELARDE, Dumitru ROSCA, Ke WANG
  • Publication number: 20220373515
    Abstract: An ultrasonic patch transducer is configured to be secured to an outer surface of a structural asset, such as a pipe or pressure vessel, for condition monitoring. The ultrasonic patch transducer includes a housing defining a centerline between a first end of the housing and a second end of the housing, a piezoelectric element within the housing and positioned along the centerline, and at least two magnets within the housing and positioned along the centerline. The at least two magnets and the piezoelectric element are configured to be positioned along a tangent plane of the structural asset.
    Type: Application
    Filed: October 23, 2020
    Publication date: November 24, 2022
    Applicant: Molex, LLC
    Inventors: Ke WANG, Alexander S. CHERNYSHOV, Mariusz KLOZA, Sascha SCHIEKE, Dumitru ROSCA
  • Patent number: 9200982
    Abstract: Various embodiments of the invention include a system having: at least one computing device connected with an array of ultrasonic probes on a gas turbomachine component, the at least one computing device configured to: instruct a first probe in the array of ultrasonic probes to transmit an ultrasonic beam to at least one additional probe in the array of ultrasonic probes; and determine a property of a medium between the first probe and the at least one additional probe based upon a time between transmission of the ultrasonic beam from the first probe and reception of the ultrasonic beam at the at least one additional probe.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: December 1, 2015
    Assignee: General Electric Company
    Inventors: Sascha Schieke, Vivek Venugopal Badami, Achalesh Kumar Pandey
  • Patent number: 8972219
    Abstract: Described herein are embodiments of methods and systems of monitoring electrical brushes in electrical rotating machinery. One embodiment of the method comprises continuously measuring at least one parameter associated with an electrical brush; and determining, using the at least one continuously measured parameter associated with the electrical brush, maintenance for the electrical brush.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Sascha Schieke, Aditi Yogin Koppikar, Mark Andrew Sporer, Chongchan Lee
  • Publication number: 20150007641
    Abstract: Various embodiments of the invention include a system having: at least one computing device connected with an array of ultrasonic probes on a gas turbomachine component, the at least one computing device configured to: instruct a first probe in the array of ultrasonic probes to transmit an ultrasonic beam to at least one additional probe in the array of ultrasonic probes; and determine a property of a medium between the first probe and the at least one additional probe based upon a time between transmission of the ultrasonic beam from the first probe and reception of the ultrasonic beam at the at least one additional probe.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 8, 2015
    Applicant: General Electric Company
    Inventors: Sascha Schieke, Vivek Venugopal Badami, Achalesh Kumar Pandey
  • Publication number: 20140208755
    Abstract: A method and system for measuring a mass flow rate in a portion of a flow path in an inlet duct of a gas turbine engine is provided. The system includes a sensor assembly attached to the inlet duct. The sensor assembly includes a tube with a longitudinal axis disposed in a substantially laminar flow region of the inlet duct, and a flow conditioner disposed in the tube. A hot wire sensor disposed in the tube is also provided.
    Type: Application
    Filed: October 23, 2013
    Publication date: July 31, 2014
    Applicant: General Electric Company
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, Rex Allen Morgan, Sascha Schieke, Thomas C. Billheimer
  • Patent number: 8770027
    Abstract: The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: July 8, 2014
    Assignee: GE Sensing & Inspection Technologies GmbH
    Inventors: York Oberdoerfer, Michael Berke, Wolf-Dietrich Kleinert, Jerome Poirier, Sascha Schieke
  • Patent number: 8739630
    Abstract: The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by means of at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: June 3, 2014
    Assignee: GE Sensing & Inspection Technology
    Inventors: York Oberdoerfer, Michael Berke, Wolf-Dietrich Kleinert, Jerome Poirier, Sascha Schieke
  • Publication number: 20140119914
    Abstract: Load control systems and methods for shafts are provided. The load control system includes a sensor assembly. The sensor assembly includes a plurality of ultrasonic probes mounted to the shaft, each of the plurality of ultrasonic sensors configured to produce an ultrasonic wave on the shaft. The sensor assembly further includes a plurality of receivers mounted to the shaft, each of the plurality of receivers configured to sense the ultrasonic wave produced by one of the plurality of ultrasonic probes. The load control system further includes a controller communicatively coupled to the sensor assembly and configured to measure a travel time of the ultrasonic wave produced by each of the plurality of ultrasonic probes.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 1, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sascha Schieke, Bharat Bagepalli, Nilesh Tralshawala, Aditi Koppikar, Pekka Sipilae
  • Patent number: 8591187
    Abstract: In one aspect, a system for detecting loads transmitted through a blade root of a rotor blade of a wind turbine is disclosed. The system may include a root attachment assembly configured to couple the blade root to a hub of the wind turbine. The root attachment assembly may include a barrel nut mounted within a portion of the blade root and a root bolt extending from the barrel nut. In addition, the system may include a sensor associated with the root attachment assembly. The sensor may be configured to detect loads transmitted through at least one of the barrel nut and the root bolt.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: November 26, 2013
    Assignee: General Electric Company
    Inventors: Bharat Bagepalli, Nilesh Tralshawala, Aditi Koppikar, Sascha Schieke, Pekka Sipilae
  • Publication number: 20130218514
    Abstract: Described herein are embodiments of methods and systems of monitoring electrical brushes in electrical rotating machinery. One embodiment of the method comprises continuously measuring at least one parameter associated with an electrical brush; and determining, using the at least one continuously measured parameter associated with the electrical brush, maintenance for the electrical brush.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 22, 2013
    Inventors: Sascha Schieke, Aditi Yogin Koppikar, Mark Andrew Sporer, Chongchan Lee
  • Publication number: 20130183153
    Abstract: A wind turbine system comprising a rotatable hub, wind turbine blades attached to the hub, a rotatable shaft mechanically coupled to the hub, a non-shaft-contacting sensor assembly comprising sensors for detecting signals representative of loads induced in the rotatable shaft and a processor for analyzing the signals representative of the loads induced in the rotatable shaft and providing control signals to in response to the induced loads.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Pekka Tapani Sipilä, Bharat Sampathkumaran Bagepalli, Sascha Schieke, Nilesh Tralshawala, Aditi Yogin Koppikar
  • Patent number: 8434996
    Abstract: A system for detecting loads in a wind turbine is disclosed. In one aspect, the system may generally include a shaft and first and second pillow blocks receiving portions of the shaft. The second pillow block may be spaced axially apart from the first pillow block. Additionally, the system may include at least one sensor configured to indirectly detect loads transmitted through at least one of the first pillow block and the second pillow block.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 7, 2013
    Assignee: General Electric Company
    Inventors: Bharat Bagepalli, Nilesh Tralshawala, Aditi Koppikar, Sascha Schieke, Pekka Sipilae
  • Publication number: 20120134810
    Abstract: A system for detecting loads in a wind turbine is disclosed. In one aspect, the system may generally include a shaft and first and second pillow blocks receiving portions of the shaft. The second pillow block may be spaced axially apart from the first pillow block. Additionally, the system may include at least one sensor configured to indirectly detect loads transmitted through at least one of the first pillow block and the second pillow block.
    Type: Application
    Filed: December 6, 2011
    Publication date: May 31, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bharat Bagepalli, Nilesh Tralshawala, Aditi Koppikar, Sascha Schieke, Pekka Sipilae
  • Publication number: 20120134809
    Abstract: In one aspect, a system for detecting loads transmitted through a blade root of a rotor blade of a wind turbine is disclosed. The system may include a root attachment assembly configured to couple the blade root to a hub of the wind turbine. The root attachment assembly may include a barrel nut mounted within a portion of the blade root and a root bolt extending from the barrel nut. In addition, the system may include a sensor associated with the root attachment assembly. The sensor may be configured to detect loads transmitted through at least one of the barrel nut and the root bolt.
    Type: Application
    Filed: December 6, 2011
    Publication date: May 31, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bharat Bagepalli, Nilesh Tralshawala, Aditi Koppikar, Sascha Schieke, Pekka Sipilae
  • Publication number: 20110247417
    Abstract: The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by means of at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver.
    Type: Application
    Filed: September 7, 2009
    Publication date: October 13, 2011
    Applicant: GE SENSING & INSPECTION TECHNOLOGIES GMBH
    Inventors: York Oberdoerfer, Michael Berke, Wolf-Dietrich Kleinert, Jerome Poirier, Sascha Schieke
  • Publication number: 20110239768
    Abstract: The invention relates to a nondestructive ultrasonic test method in which at least one ultrasonic pulse is emitted into a workpiece under test by means of at least one ultrasonic transmitter (3), the ultrasonic pulse is reflected on boundary surfaces within the workpiece, the reflected ultrasound is received by at least one ultrasonic receiver (2), and the associated signals are evaluated, the ultrasound penetrating a damping block (4) that is arranged between the workpiece and the transmitter or receiver.
    Type: Application
    Filed: September 7, 2009
    Publication date: October 6, 2011
    Applicant: GE SENSING & INSPECTION TECHNOLOGIES GMBH
    Inventors: Michael Berke, Wolf-Dietrich Kleinert, York Oberdoerfer, Jerome Poirier, Sascha Schieke