Patents by Inventor Sasha Marjanovic

Sasha Marjanovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250128986
    Abstract: A method of laser bonding glass to metal foil includes contacting a first glass substrate with a first metal foil to create a first contact location; directing a laser beam on the first contact location to bond the first glass substrate to the first metal foil; contacting a second glass substrate with a second metal foil to create a second contact location; and directing the laser beam on the second contact location to bond the second glass substrate to the second metal foil, wherein the first metal foil and the second metal foil each have a thickness from 5 ?m to 100 ?m, and wherein the laser beam comprises a pulsed laser comprising: a pulse energy from 2.8 ?J to 1000 ?J; and a wavelength such that the first and second glass substrates are substantially transparent to the wavelength.
    Type: Application
    Filed: August 26, 2022
    Publication date: April 24, 2025
    Inventors: Jason Roy Grenier, Sasha Marjanovic, Bertrand Paris, Jonathan David Pesansky, Kristopher Allen Wieland, Ming Ying
  • Patent number: 12233474
    Abstract: A method of laser processing a transparent workpiece includes directing a pulsed laser beam into the transparent workpiece. The pulsed laser beam includes pulse bursts having 2 sub-pulses per pulse burst or more, each pulse burst of the pulsed laser beam has a burst duration Tbd of 380 ns or greater; and the pulsed laser beam forms a pulsed laser beam focal line in the transparent workpiece, the pulsed laser beam focal line inducing absorption in the transparent workpiece, the induced absorption producing a defect in the transparent workpiece. The pulsed laser beam focal line includes a wavelength ?, a spot size wo, and a Rayleigh range ZR that is greater than F D ? ? ? w o 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: February 25, 2025
    Assignee: CORNING INCORPORATED
    Inventors: Valdemaras Juzumas, Reinhard Moritz Malchus, Sasha Marjanovic, Garrett Andrew Piech, Vytautas Sabonis, Ralf Joachim Terbrueggen
  • Publication number: 20240116140
    Abstract: A method of processing a transparent workpiece comprises directing a defect-forming laser beam to an impingement surface of a transparent workpiece, the defect-forming laser beam having a numerical aperture from 0.10 to 0.25, the transparent workpiece having a textured surface, the textured surface having an Ra value of greater than or equal to 0.5 ?m.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 11, 2024
    Inventors: Sterling Michael Clarke, Reinhard Moritz Malchus, Sasha Marjanovic, Garrett Andrew Piech, Alranzo Boh Ruffin, Sergio Tsuda
  • Patent number: 11773004
    Abstract: The present invention relates to a laser cutting technology for cutting and separating thin substrates of transparent materials, for example to cutting of display glass compositions mainly used for production of Thin Film Transistors (TFT) devices. The described laser process can be used to make straight cuts, for example at a speed of >0.25 m/sec, to cut sharp radii outer corners (<1 mm), and to create arbitrary curved shapes including forming interior holes and slots. A method of laser processing an alkaline earth boro-aluminosilicate glass composite workpiece includes focusing a pulsed laser beam into a focal line. The pulsed laser produces pulse bursts with 5-20 pulses per pulse burst and pulse burst energy of 300-600 micro Joules per burst. The focal line is directed into the glass composite workpiece, generating induced absorption within the material.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: October 3, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Thomas Hackert, Xinghua Li, Sasha Marjanovic, Moussa N'Gom, David Andrew Pastel, Garrett Andrew Piech, Daniel Schnitzler, Robert Stephen Wagner, James Joseph Watkins
  • Publication number: 20230264294
    Abstract: A method of preparing a workpiece for laser bonding includes positioning a first metal gasket on a fixture; positioning a first surface of a substrate on the first metal gasket, wherein the fixture, the first metal gasket and the first surface of the substrate define a first cavity; applying a vacuum to the first cavity, the vacuum pulling the substrate against the first metal gasket; and directing a laser at an interface of the first metal gasket and the first surface of the substrate, wherein the laser forms a bond between the first metal gasket and the first surface of the substrate.
    Type: Application
    Filed: February 20, 2023
    Publication date: August 24, 2023
    Inventors: Sasha Marjanovic, Bertrand Paris, Kristopher Allen Wieland
  • Publication number: 20210379695
    Abstract: A method of laser processing a transparent workpiece includes directing a pulsed laser beam into the transparent workpiece. The pulsed laser beam includes pulse bursts having 2 sub-pulses per pulse burst or more, each pulse burst of the pulsed laser beam has a burst duration Tbd of 380 ns or greater; and the pulsed laser beam forms a pulsed laser beam focal line in the transparent workpiece, the pulsed laser beam focal line inducing absorption in the transparent workpiece, the induced absorption producing a defect in the transparent workpiece. The pulsed laser beam focal line includes a wavelength ?, a spot size wo, and a Rayleigh range ZR that is greater than F D ? ? ? w o 2 ? , where FD is a dimensionless divergence factor comprising a value of 10 or greater.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 9, 2021
    Inventors: Valdemaras Juzumas, Reinhard Moritz Malchus, Sasha Marjanovic, Garrett Andrew Piech, Vytautas Sabonis, Ralf Joachim Terbrueggen
  • Patent number: 11148225
    Abstract: Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 19, 2021
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Shyamala Shanmugam, Carlos Alberto Pons Siepermann, Sergio Tsuda, Zsigmond Varga, Robert Stephen Wagner
  • Patent number: 10611668
    Abstract: The present disclosure relates to a process for cutting and separating arbitrary shapes of thin substrates of transparent materials, particularly tailored composite fusion drawn glass sheets, and the disclosure also relates to a glass article prepared by the method. The developed laser method can be tailored for manual separation of the parts from the panel or full laser separation by thermally stressing the desired profile. The self-separation method involves the utilization of an ultra-short pulse laser that can be followed by a CO2 laser (coupled with high pressure air flow) for fully automated separation.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Kamjula Pattabhirami Reddy, Pushkar Tandon, Sergio Tsuda, Natesan Venkataraman, Robert Stephen Wagner
  • Patent number: 10597321
    Abstract: Processes of chamfering and/or beveling an edge of a glass substrate of arbitrary shape using lasers are described herein. Two general methods to produce chamfers on glass substrates are the first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser to create perforations within the glass; followed by an ion exchange.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: March 24, 2020
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, David Andrew Pastel, Garrett Andrew Piech, Jose Mario Quintal, Helmut Schillinger, Sergio Tsuda, Robert Stephen Wagner, Andrea Nichole Yeary
  • Patent number: 10525657
    Abstract: A gas permeable glass window, suitable for use with liquid interface additive manufacturing, has an optically transparent glass article greater than about 0.5 millimeters in thickness defining a first surface and a second surface. A plurality of gas channels are disposed through the article from the first surface to the second surface. The gas channels occupy less than about 1.0% of a surface area of the article and are configured such that the article has a gas permeability between about 10 barrers and about 2000 barrers.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: January 7, 2020
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Kristopher Allen Wieland
  • Patent number: 10442719
    Abstract: Processes of chamfering and/or beveling an edge of a glass or other substrate of arbitrary shape using lasers are described herein. Three general methods to produce chamfers on glass substrates are disclosed. The first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser. Treatment with the ultra-short laser may be optionally followed by a CO2 laser for fully automated separation. The second method is based on thermal stress peeling of a sharp edge corner, and it has been demonstrated to work with different combination of an ultrashort pulse and/or CO2 lasers. A third method relies on stresses induced by ion exchange to effect separation of material along a fault line produced by an ultra-short laser to form a chamfered edge of desired shape.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: October 15, 2019
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Helmut Schillinger, Sergio Tsuda, Robert Stephen Wagner
  • Patent number: 10392290
    Abstract: Methods are provided for laser processing arbitrary shapes of molded 3D thin transparent brittle parts from substrates with particular interest in substrates formed from strengthened or non-strengthened Corning Gorilla® glass (all codes). The developed laser methods can be tailored for manual separation of the parts from the panel or full laser separation by thermal stressing the desired profile. Methods can be used to form 3D surfaces with small radii of curvature. The method involves the utilization of an ultra-short pulse laser that may be optionally followed by a CO2 laser for fully automated separation.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 27, 2019
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Patent number: 10330830
    Abstract: A display device having a display element, such as a light-emitting device or a light-reflecting device, such as a MEMS device, and a glass touch panel covering the display element, the outer surface of the panel being textured. The panel is thin, having a thickness of 1.1 mm or less between the inner and outer surfaces.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: June 25, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Nicholas Francis Borrelli, Sasha Marjanovic, Timothy James Orsley
  • Patent number: 10293436
    Abstract: Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: May 21, 2019
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Shyamala Shanmugam, Sergio Tsuda, Robert Stephen Wagner
  • Publication number: 20190119150
    Abstract: A method for processing a transparent workpiece includes forming a closed contour line having a plurality of defects in the transparent workpiece such that the closed contour line defines a closed contour. Forming the closed contour line includes directing a pulsed laser beam through an aspheric optical element and into the transparent workpiece such that a portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece, the induced absorption producing a defect within the transparent workpiece, and translating the transparent workpiece and the pulsed laser beam relative to each other along the closed contour line. The method further includes etching the transparent workpiece with a chemical etching solution at an etching rate of about 2.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 25, 2019
    Inventors: Robert Carl Burket, Daniel Wayne Levesque, JR., Sasha Marjanovic, Garrett Andrew Piech, Heather Nicole Vanselous, Kristopher Allen Wieland
  • Publication number: 20190084090
    Abstract: Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 21, 2019
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Shyamala Shanmugam, Carlos Alberto Pons Siepermann, Sergio Tsuda, Zsigmond Varga, Robert Stephen Wagner
  • Patent number: 10233112
    Abstract: The present invention relates to a process for cutting and separating interior contours in thin substrates of transparent materials, in particular glass. The method involves the utilization of an ultra-short pulse laser to form perforation or holes in the substrate, that may be followed by use of a CO2 laser beam to promote full separation about the perforated line.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: March 19, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Thomas Hackert, Sasha Marjanovic, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Patent number: 10183885
    Abstract: The present disclosure relates to a process for cutting and separating arbitrary shapes of thin substrates of transparent materials, particularly tailored composite fusion drawn glass sheets, and the disclosure also relates to a glass article prepared by the method. The developed laser method can be tailored for manual separation of the parts from the panel or full laser separation by thermally stressing the desired profile. The self-separation method involves the utilization of an ultra-short pulse laser that can be followed by a CO2 laser (coupled with high pressure air flow) for fully automated separation.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: January 22, 2019
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Kamjula Pattabhirami Reddy, Pushkar Tandon, Sergio Tsuda, Natesan Venkataraman, Robert Stephen Wagner
  • Patent number: 10179748
    Abstract: A method of laser processing a material to form a separated part. The method includes focusing a pulsed laser beam into a laser beam focal line, viewed along the beam propagation direction, directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a hole or fault line along the laser beam focal line within the material, and directing a defocused carbon dioxide (CO2) laser from a distal edge of the material over the plurality of holes to a proximal edge of the material.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: January 15, 2019
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Sergio Tsuda, Robert Stephen Wagner
  • Patent number: 10144093
    Abstract: Forming holes in a material includes focusing a pulsed laser beam into a laser beam focal line oriented along the beam propagation direction and directed into the material, the laser beam focal line generating an induced absorption within the material, the induced absorption producing a defect line along the laser beam focal line within the material, and translating the material and the laser beam relative to each other, thereby forming a plurality of defect lines in the material, and etching the material in an acid solution to produce holes greater than 1 micron in diameter by enlarging the defect lines in the material. A glass article includes a stack of glass substrates with formed holes of 1-100 micron diameter extending through the stack.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 4, 2018
    Assignee: Corning Incorporated
    Inventors: Sasha Marjanovic, Garrett Andrew Piech, Shyamala Shanmugam, Carlos Alberto Pons Siepermann, Sergio Tsuda, Zsigmond Varga, Robert Stephen Wagner