Patents by Inventor Sashidharan Venkatraman

Sashidharan Venkatraman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747487
    Abstract: The disclosure provides a GNSS receiver. The GNSS receiver a measurement engine that generates a set of doppler measurements and a set of pseudo ranges in response to an input signal. A clock frequency drift estimation (CFDE) block receives the set of doppler measurements, and generates an averaged delta doppler. A position estimation engine estimates a position and velocity of a user based on the set of doppler measurements, the set of pseudo ranges and the averaged delta doppler.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: September 5, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sashidharan Venkatraman, Sandeep Rao
  • Patent number: 11469784
    Abstract: One example includes a receiver system. The receiver system includes an analog-to-digital converter (ADC) configured to convert an analog input signal into a digital output signal at a sampling frequency. The receiver system also includes a spur correction system configured to receive the digital output signal and to estimate spurs associated with the digital output signal and to selectively correct a subset of the spurs associated with a set of frequencies that are based on the sampling frequency.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: October 11, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aswath Vs, Sthanunathan Ramakrishnan, Sriram Murali, Sarma Sundareswara Gunturi, Jaiganesh Balakrishnan, Sashidharan Venkatraman
  • Publication number: 20220229961
    Abstract: A system for programming an eFuse array in an integrated circuit (IC) includes an eFuse data file which has a first plurality of bits. The system includes a data compression module which has an input coupled to receive the eFuse data file. The data compression module reduces the size of the eFuse data file and provides a compressed data file. The compressed data file has fewer bits than the eFuse data file. The system includes an eFuse controller which has an input coupled to receive the compressed data file. The eFuse controller programs the eFuse array to permanently store the compressed data file in the eFuse array.
    Type: Application
    Filed: August 25, 2021
    Publication date: July 21, 2022
    Inventors: Ajai Paulose, Aravind Ganesan, Sashidharan Venkatraman, Jaiganesh Balakrishnan
  • Patent number: 11374669
    Abstract: A phase spectrum based delay estimating method of tracking channel responses, extracting phase responses from the tracked channel responses, and generating a delay estimate, wherein the delay estimate is based on a slope and intercept estimates of the extracted phase responses with high quality metric to improve delay estimation, and a system thereof.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: June 28, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sashidharan Venkatraman, Jawaharlal Tangudu, Sarma Sundareswara Gunturi, Yeswanth Guntupalli
  • Patent number: 11336380
    Abstract: A channel response generating module and method for generating a channel response based on a ratio of a channel response corresponding to an image signal frequency bin in relation to a channel response corresponding to a traffic signal frequency bin, or a channel response corresponding to a first frequency bin in relation to a channel response corresponding to a second frequency bin, and a zero-IF signal transmitter employing the channel response generating module and method to efficiently suppress image signals or compensate traffic signals during transmission of IQ RF signals.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: May 17, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sarma Sundareswara Gunturi, Chandrasekhar Sriram, Jawaharlal Tangudu, Sashidharan Venkatraman
  • Patent number: 11095485
    Abstract: An electrical system includes a transceiver with an IQ estimator and an IQ mismatch corrector. The electrical system also includes an antenna coupled to the transceiver. The IQ estimator is configured to perform frequency-domain IQ mismatch analysis to determine an IQ mismatch estimate at available frequency bins of a baseband data signal. The IQ mismatch corrector is configured to correct the baseband data signal based on the IQ mismatch estimate.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: August 17, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jawaharlal Tangudu, Sashidharan Venkatraman, Sundarrajan Rangachari, Sarma Sundareswara Gunturi, Sthanunathan Ramakrishnan
  • Patent number: 11063618
    Abstract: An IQ mismatch estimation circuit includes a raw channel estimation circuit, a reference channel estimation circuit, a digital predistortion (DPD) bin identification circuit, a channel estimate pruning circuit, and an IQ correction coefficient generation circuit. The raw channel estimation circuit generates raw channel estimates for a plurality of frequency bins of a baseband signal. The reference channel estimation circuit identifies a reference channel estimate based on the raw channel estimates. The DPD bin identification circuit identifies, based on the reference channel estimate, the frequency bins for which the raw channel estimates are based on a DPD expansion signal. The channel estimate pruning circuit generates pruned raw channel estimates by discarding the raw channel estimates of the frequency bins identified by the DPD bin identification circuit. The IQ correction coefficient generation circuit generates IQ mismatch correction coefficients based on the pruned raw channel estimates.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: July 13, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sashidharan Venkatraman, Jawaharlal Tangudu, Sarma Sundareswara Gunturi, Ram Narayan Krishna Nama Mony
  • Publication number: 20210105034
    Abstract: One example includes a receiver system. The receiver system includes an analog-to-digital converter (ADC) configured to convert an analog input signal into a digital output signal at a sampling frequency. The receiver system also includes a spur correction system configured to receive the digital output signal and to estimate spurs associated with the digital output signal and to selectively correct a subset of the spurs associated with a set of frequencies that are based on the sampling frequency.
    Type: Application
    Filed: August 24, 2020
    Publication date: April 8, 2021
    Inventors: ASWATH VS, STHANUNATHAN RAMAKRISHNAN, SRIRAM MURALI, SARMA SUNDARESWARA GUNTURI, JAIGANESH BALAKRISHNAN, SASHIDHARAN VENKATRAMAN
  • Publication number: 20210083697
    Abstract: An IQ mismatch estimation circuit includes a raw channel estimation circuit, a reference channel estimation circuit, a digital predistortion (DPD) bin identification circuit, a channel estimate pruning circuit, and an IQ correction coefficient generation circuit. The raw channel estimation circuit generates raw channel estimates for a plurality of frequency bins of a baseband signal. The reference channel estimation circuit identifies a reference channel estimate based on the raw channel estimates. The DPD bin identification circuit identifies, based on the reference channel estimate, the frequency bins for which the raw channel estimates are based on a DPD expansion signal. The channel estimate pruning circuit generates pruned raw channel estimates by discarding the raw channel estimates of the frequency bins identified by the DPD bin identification circuit. The IQ correction coefficient generation circuit generates IQ mismatch correction coefficients based on the pruned raw channel estimates.
    Type: Application
    Filed: July 30, 2020
    Publication date: March 18, 2021
    Inventors: Sashidharan Venkatraman, Jawaharlal Tangudu, Sarma Sundareswara Gunturi, Ram Narayan Krishna Nama Mony
  • Patent number: 10812294
    Abstract: A channel estimation method and system for IQ imbalance and local oscillator leakage correction, wherein an example of a channel estimation system comprising a calibrating signal generator configured to generate at least one pair of calibrating signals, a feedback IQ mismatch estimator configured to measure feedback IQ mismatch estimates based on the pair of calibrating signals, and a calibrating signal based channel estimator configured to generate a channel estimate based on the pair of calibrating signals and the feedback IQ mismatch estimates.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: October 20, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jawaharlal Tangudu, Sashidharan Venkatraman, Sarma Sundareswara Gunturi, Chandrasekhar Sriram, Sthanunathan Ramakrishnan, Ram Narayan Krishna Nama Mony
  • Publication number: 20200322067
    Abstract: A channel response generating module and method for generating a channel response based on a ratio of a channel response corresponding to an image signal frequency bin in relation to a channel response corresponding to a traffic signal frequency bin, or a channel response corresponding to a first frequency bin in relation to a channel response corresponding to a second frequency bin, and a zero-IF signal transmitter employing the channel response generating module and method to efficiently suppress image signals or compensate traffic signals during transmission of IQ RF signals.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 8, 2020
    Inventors: Sarma Sundareswara GUNTURI, Chandrasekhar SRIRAM, Jawaharlal TANGUDU, Sashidharan VENKATRAMAN
  • Patent number: 10778344
    Abstract: A channel response generating module and method for generating a channel response based on a ratio of a channel response corresponding to an image signal frequency bin in relation to a channel response corresponding to a traffic signal frequency bin, or a channel response corresponding to a first frequency bin in relation to a channel response corresponding to a second frequency bin, and a zero-IF signal transmitter employing the channel response generating module and method to efficiently suppress image signals or compensate traffic signals during transmission of IQ RF signals.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: September 15, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sarma Sundareswara Gunturi, Chandrasekhar Sriram, Jawaharlal Tangudu, Sashidharan Venkatraman
  • Publication number: 20200177417
    Abstract: An electrical system includes a transceiver with an IQ estimator and an IQ mismatch corrector. The electrical system also includes an antenna coupled to the transceiver. The IQ estimator is configured to perform frequency-domain IQ mismatch analysis to determine an IQ mismatch estimate at available frequency bins of a baseband data signal. The IQ mismatch corrector is configured to correct the baseband data signal based on the IQ mismatch estimate.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Inventors: Jawaharlal TANGUDU, Sashidharan VENKATRAMAN, Sundarrajan RANGACHARI, Sarma Sundareswara GUNTURI, Sthanunathan RAMAKRISHNAN
  • Publication number: 20200169434
    Abstract: A channel estimation method and system for IQ imbalance and local oscillator leakage correction, wherein an example of a channel estimation system comprising a calibrating signal generator configured to generate at least one pair of calibrating signals, a feedback IQ mismatch estimator configured to measure feedback IQ mismatch estimates based on the pair of calibrating signals, and a calibrating signal based channel estimator configured to generate a channel estimate based on the pair of calibrating signals and the feedback IQ mismatch estimates.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 28, 2020
    Inventors: Jawaharlal TANGUDU, Sashidharan VENKATRAMAN, Sarma Sundareswara GUNTURI, Chandrasekhar SRIRAM, Sthanunathan RAMAKRISHNAN, Ram Narayan KRISHNA NAMA MONY
  • Publication number: 20200169342
    Abstract: A phase spectrum based delay estimating method of tracking channel responses, extracting phase responses from the tracked channel responses, and generating a delay estimate, wherein the delay estimate is based on a slope and intercept estimates of the extracted phase responses with high quality metric to improve delay estimation, and a system thereof.
    Type: Application
    Filed: October 4, 2019
    Publication date: May 28, 2020
    Inventors: Sashidharan VENKATRAMAN, Jawaharlal TANGUDU, Sarma Sundareswara GUNTURI, Yeswanth GUNTUPALLI
  • Publication number: 20200153516
    Abstract: A channel response generating module and method for generating a channel response based on a ratio of a channel response corresponding to an image signal frequency bin in relation to a channel response corresponding to a traffic signal frequency bin, or a channel response corresponding to a first frequency bin in relation to a channel response corresponding to a second frequency bin, and a zero-IF signal transmitter employing the channel response generating module and method to efficiently suppress image signals or compensate traffic signals during transmission of IQ RF signals.
    Type: Application
    Filed: October 23, 2019
    Publication date: May 14, 2020
    Inventors: Sarma Sundareswara GUNTURI, Chandrasekhar SRIRAM, Jawaharlal TANGUDU, Sashidharan VENKATRAMAN
  • Patent number: 10615813
    Abstract: Multi-Nyquist differentiator circuits and a radio frequency sampling receiver that applies a multi-Nyquist differentiator circuit. A multi-Nyquist differentiator includes a fixed coefficient filter, a scaling circuit, and a summation circuit. The fixed coefficient filter is configured to filter digital samples generated by an ADC. The scaling circuit is coupled to an output of the fixed coefficient filter, and is configured to scale output of the fixed coefficient filter based on a selected Nyquist band. The summation circuit is coupled to the scaling circuit, and is configured to generate a derivative of the digital samples based on output of the scaling circuit.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: April 7, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sriram Murali, Jaiganesh Balakrishnan, Chandrasekhar Sriram, Sashidharan Venkatraman, Jagdish Kumar Agrawal
  • Patent number: 10541703
    Abstract: An interleaved ADC receives an RX signal attenuated by a DSA based on an active DSA setting, within a range of DSA settings (DSA setting range) corresponding to selectable attenuation steps, the DSA setting range partitioned into a number of DSA setting subranges (DSA subranges). The ADC includes an IL mismatch estimation engine in the digital signal path, with an estimation subrange blanker, and an IL mismatch estimator. The estimation subrange blanker is coupled to receive the IADC data stream, and responsive to a DSA subrange allocation signal to select, in each of successive aggregation cycles, IADC data corresponding to an active DSA setting that is within an allocated DSA subrange (DSA active data within an DSA allocated subrange).
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: January 21, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sthanunathan Ramakrishnan, Sashidharan Venkatraman, Jaiganesh Balakrishnan, Sreenath Narayanan Potty
  • Patent number: 10483997
    Abstract: A method for frequency domain to time domain conversion includes receiving a set of frequency-domain samples. Based on the set of frequency-domain samples, a first sample subset comprising a predetermined fraction of the number of samples of the set of frequency-domain samples and a second sample subset comprising the predetermined fraction of the number of samples of the set of frequency-domain samples are generated. A linear phase rotation is applied to the first sample subset and the second sample subset to produce a phase rotated first sample subset and a phase rotated second sample subset. The phase rotated first sample set is post-processed to generate a first set of time-domain samples. The phase rotated second sample set is post-processed to generate a second set of time-domain samples. The first set of time-domain samples and the second set of time-domain samples are reordered to produce an output set of time-domain samples.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: November 19, 2019
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Aravind Ganesan, Jaiganesh Balakrishnan, Sashidharan Venkatraman, Bragadeesh Suresh Babu
  • Publication number: 20190293804
    Abstract: The disclosure provides a GNSS receiver. The GNSS receiver a measurement engine that generates a set of doppler measurements and a set of pseudo ranges in response to an input signal. A clock frequency drift estimation (CFDE) block receives the set of doppler measurements, and generates an averaged delta doppler. A position estimation engine estimates a position and velocity of a user based on the set of doppler measurements, the set of pseudo ranges and the averaged delta doppler.
    Type: Application
    Filed: March 26, 2018
    Publication date: September 26, 2019
    Inventors: Sashidharan Venkatraman, Sandeep Rao