Patents by Inventor Saskia DEGE
Saskia DEGE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11447231Abstract: An actuating system for pivoting a wing tip section (13) about a fixed wing base section (11), and including a heating arrangement (33) positioned and adapted to be operable to heat at least one portion of an actuating arrangement (23) that pivots the wing tip section such that at least for ambient temperatures below a predetermined temperature the required work to be effected by the actuator (25) when moving the second coupling part (31) between the first position and the second position is lower than without heating the at least one portion.Type: GrantFiled: November 16, 2018Date of Patent: September 20, 2022Assignees: Airbus Operations GmbH, Airbus Operations S.A.S.Inventors: Saskia Dege, Svenja Jegminat, Yann Nicolas
-
Patent number: 11345487Abstract: A method for testing an arresting unit (15) for locking a foldable wing tip portion (11) to a wing (5) that includes a fixed wing (9), a foldable wing tip portion (11), and a folded position, an actuation unit (13) for actuating movement of the foldable wing tip portion (11), and an arresting unit (15) for locking the foldable wing tip portion (11). The method includes: locking the foldable wing tip portion (11) in the extended position by the arresting unit (15), controlling the actuation unit (13) to move the foldable wing tip portion (11) in the direction towards the folded position, such that the foldable wing tip portion (11) urges against the arresting unit (15) with a predefined test load, detecting deformation of the arresting unit (15) during or after application of the test load, and comparing the detected deformation to a predefined threshold deformation.Type: GrantFiled: November 16, 2018Date of Patent: May 31, 2022Assignee: Airbus Operations GmbHInventors: Saskia Dege, Svenja Jegminat
-
Patent number: 11319054Abstract: A wing arrangement for an aircraft is disclosed including a wing having a base section with a first end portion, which is adapted to be secured to the fuselage of an aircraft, and an opposite second end portion, and a tip section with a third end portion and an opposite fourth end portion. The third end portion is pivotably connected to the second end portion such that the tip section (9) is selectively pivotable about a tip section pivot axis between a deployed position and a folded position in which the spanwise length of the wing is smaller than in the deployed position. An actuating system including an actuator and coupled between the base section and the tip section such that the actuator is operable to selectively move the tip section between the deployed position and the folded position. The actuating system includes at least one first component arranged and adapted to move upon operating the actuator.Type: GrantFiled: May 30, 2019Date of Patent: May 3, 2022Assignee: AIRBUS OPERATIONS GmbHInventors: Paul Weder, Saskia Dege, Svenja Jegminat
-
Patent number: 11214353Abstract: A wing arrangement for an aircraft is disclosed including a wing having a fixed wing portion and a wing tip portion, wherein a the wing tip portion is pivotably connected to the fixed wing portion such that the wing tip portion is selectively pivotable about a pivot axis relative to the fixed wing portion between a first wing tip portion position and a wing tip portion second position, an actuator having an output element adapted to transfer an actuating torque and/or force to the wing tip portion for actuating the wing tip portion for movement about the pivot axis. The output element is movable between a first actuator position and a second actuator position, a first end stop for preventing movement of the wing tip portion beyond the first wing tip portion position, a detector adapted to detect a position of the output element, and a control unit adapted to control the actuating torque and/or force of the actuator based on the detected position of the output element.Type: GrantFiled: May 31, 2019Date of Patent: January 4, 2022Assignee: AIRBUS OPERATIONS GmbHInventor: Saskia Dege
-
Patent number: 11027819Abstract: A method to control folding of a wing tip section about a fixed base wing section by a control system that automatically determines whether: (i) a command signal is received to fold the wing tip section, (ii) a first condition indicating signal indicates that the aircraft is on the ground; (iii) the current speed of the aircraft is no greater than a preset maximum speed, and (iv) the aircraft is not at gate in an airport.Type: GrantFiled: November 16, 2018Date of Patent: June 8, 2021Assignees: Airbus Operations GmbH, Airbus Operations (SAS), Airbus Operations LimitedInventors: Saskia Dege, Svenja Jegminat, Frank Nienaber, Jean Guilhamet, Aeron Charles Jones
-
Patent number: 11008088Abstract: A method for operating a wing (5) including a fixed wing (9), a foldable wing tip portion (11) mounted to the fixed wing (9) pivotally between an extended position and a folded position, an actuation unit (13) for actuating movement of the foldable wing tip portion (11), and an arresting unit (15) for locking the foldable wing tip portion (11) in the extended position and/or in the folded position. The method includes controlling the actuation unit (13) to move the foldable wing tip portion (11) either to the extended position or to the folded position until the foldable wing tip portion (11) or the actuation unit (13) contacts a stop element (28), continuing actuation until the actuation unit (13) reaches a stall condition, detecting the stall condition of the actuation unit (13), and locking the arresting unit (15) upon detection of the stall condition.Type: GrantFiled: November 16, 2018Date of Patent: May 18, 2021Assignee: Airbus Operations GmbHInventors: Saskia Dege, Svenja Jegminat
-
Patent number: 10864978Abstract: A method to detect a failure of a sensor or system in an aircraft, wherein the aircraft includes a wing including a fixed wing and a wing tip device pivotably mounted to the fixed wing, a sensor system, and a control unit including a system behavior model which models a target vale of an operation parameter of the wing, wherein the method includes: detecting a value of an operation parameter by the sensor system; comparing the detected value of the operation parameter to a corresponding target value of the operation parameter obtained from the system behavior model, and declaring a sensor failure or a system failure in response to determining a predefined deviation of the detected value from the corresponding target value of the operation parameter, detecting a sensor failure or a system failure.Type: GrantFiled: November 16, 2018Date of Patent: December 15, 2020Assignee: Airbus Operations GmbHInventors: Saskia Dege, Svenja Jegminat, Jörg Wyrembek
-
Publication number: 20200023938Abstract: A method to control folding of a wing tip section about a fixed base wing section by a control system that automatically determines whether: (i) a command signal is received to fold the wing tip section, (ii) a first condition indicating signal indicates that the aircraft is on the ground; (iii) the current speed of the aircraft is no greater than a preset maximum speed, and (iv) the aircraft is not at gate in an airport.Type: ApplicationFiled: November 16, 2018Publication date: January 23, 2020Inventors: Saskia DEGE, Svenja JEGMINAT, Frank NIENABER, Jean GUILHAMET, Aeron Charles JONES
-
Publication number: 20190367154Abstract: A wing arrangement for an aircraft is disclosed including a wing having a base section with a first end portion, which is adapted to be secured to the fuselage of an aircraft, and an opposite second end portion, and a tip section with a third end portion and an opposite fourth end portion. The third end portion is pivotably connected to the second end portion such that the tip section (9) is selectively pivotable about a tip section pivot axis between a deployed position and a folded position in which the spanwise length of the wing is smaller than in the deployed position. An actuating system including an actuator and coupled between the base section and the tip section such that the actuator is operable to selectively move the tip section between the deployed position and the folded position. The actuating system includes at least one first component arranged and adapted to move upon operating the actuator.Type: ApplicationFiled: May 30, 2019Publication date: December 5, 2019Inventors: Paul WEDER, Saskia DEGE, Svenja JEGMINAT
-
Publication number: 20190367155Abstract: A wing arrangement for an aircraft is disclosed including a wing having a fixed wing portion and a wing tip portion, wherein a the wing tip portion is pivotably connected to the fixed wing portion such that the wing tip portion is selectively pivotable about a pivot axis relative to the fixed wing portion between a first wing tip portion position and a wing tip portion second position, an actuator having an output element adapted to transfer an actuating torque and/or force to the wing tip portion for actuating the wing tip portion for movement about the pivot axis. The output element is movable between a first actuator position and a second actuator position, a first end stop for preventing movement of the wing tip portion beyond the first wing tip portion position, a detector adapted to detect a position of the output element, and a control unit adapted to control the actuating torque and/or force of the actuator based on the detected position of the output element.Type: ApplicationFiled: May 31, 2019Publication date: December 5, 2019Inventor: Saskia DEGE
-
Publication number: 20190152624Abstract: A method for testing an arresting unit (15) for locking a foldable wing tip portion (11) to a wing (5) that includes a fixed wing (9), a foldable wing tip portion (11), and a folded position, an actuation unit (13) for actuating movement of the foldable wing tip portion (11), and an arresting unit (15) for locking the foldable wing tip portion (11). The method includes: locking the foldable wing tip portion (11) in the extended position by the arresting unit (15), controlling the actuation unit (13) to move the foldable wing tip portion (11) in the direction towards the folded position, such that the foldable wing tip portion (11) urges against the arresting unit (15) with a predefined test load, detecting deformation of the arresting unit (15) during or after application of the test load, and comparing the detected deformation to a predefined threshold deformation.Type: ApplicationFiled: November 16, 2018Publication date: May 23, 2019Inventors: Saskia DEGE, Svenja JEGMINAT
-
Publication number: 20190152578Abstract: A method to detect a failure of a sensor or system in an aircraft, wherein the aircraft includes a wing including a fixed wing and a wing tip device pivotably mounted to the fixed wing, a sensor system, and a control unit including a system behavior model which models a target vale of an operation parameter of the wing, wherein the method includes: detecting a value of an operation parameter by the sensor system; comparing the detected value of the operation parameter to a corresponding target value of the operation parameter obtained from the system behavior model, and declaring a sensor failure or a system failure in response to determining a predefined deviation of the detected value from the corresponding target value of the operation parameter, detecting a sensor failure or a system failure.Type: ApplicationFiled: November 16, 2018Publication date: May 23, 2019Inventors: Saskia DEGE, Svenja JEGMINAT, Jörg WYREMBEK
-
Publication number: 20190152580Abstract: An actuating system for pivoting a wing tip section (13) about a fixed wing base section (11), and including a heating arrangement (33) positioned and adapted to be operable to heat at least one portion of an actuating arrangement (23) that pivots the wing tip section such that at least for ambient temperatures below a predetermined temperature the required work to be effected by the actuator (25) when moving the second coupling part (31) between the first position and the second position is lower than without heating the at least one portion.Type: ApplicationFiled: November 16, 2018Publication date: May 23, 2019Inventors: Saskia DEGE, Svenja JEGMINAT, Yann NICOLAS
-
Publication number: 20190152579Abstract: A method for operating a wing (5) including a fixed wing (9), a foldable wing tip portion (11) mounted to the fixed wing (9) pivotally between an extended position and a folded position, an actuation unit (13) for actuating movement of the foldable wing tip portion (11), and an arresting unit (15) for locking the foldable wing tip portion (11) in the extended position and/or in the folded position. The method includes controlling the actuation unit (13) to move the foldable wing tip portion (11) either to the extended position or to the folded position until the foldable wing tip portion (11) or the actuation unit (13) contacts a stop element (28), continuing actuation until the actuation unit (13) reaches a stall condition, detecting the stall condition of the actuation unit (13), and locking the arresting unit (15) upon detection of the stall condition.Type: ApplicationFiled: November 16, 2018Publication date: May 23, 2019Inventors: Saskia DEGE, Svenja JEGMINAT
-
Patent number: 9771144Abstract: A high lift system for an aircraft, comprises a drive unit, a high lift surface, at least one primary drive station, each primary drive station having a shaft connection couplable with the drive unit and a primary lever couplable with the high lift surface. The high lift system further comprises at least one secondary unit, each secondary unit having a secondary lever couplable with the high lift surface. Each one of the at least one primary drive station is adapted for moving the respective primary lever on driving the shaft connection, and each one of the at least one secondary unit comprises a selectively activatable brake, such that the secondary lever follows the motion of the one of the at least one high lift surface when the brake is deactivated.Type: GrantFiled: May 22, 2015Date of Patent: September 26, 2017Assignee: Airbus Operations GmbHInventor: Saskia Dege
-
Publication number: 20150360769Abstract: A high lift system for an aircraft, comprises a drive unit, a high lift surface, at least one primary drive station, each primary drive station having a shaft connection couplable with the drive unit and a primary lever couplable with the high lift surface. The high lift system further comprises at least one secondary unit, each secondary unit having a secondary lever couplable with the high lift surface. Each one of the at least one primary drive station is adapted for moving the respective primary lever on driving the shaft connection, and each one of the at least one secondary unit comprises a selectively activatable brake, such that the secondary lever follows the motion of the one of the at least one high lift surface when the brake is deactivated.Type: ApplicationFiled: May 22, 2015Publication date: December 17, 2015Inventor: Saskia DEGE