Patents by Inventor Sassan Tabatabaei

Sassan Tabatabaei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11871369
    Abstract: In various time-transfer systems, one or more fixed-position time beacons broadcast radio-frequency (RF) time-transfer messages to time-keeping modules disposed in remote radio heads and other strategic locations to achieve highly reliable and accurate synchronized time, phase, and frequency transfer over a metropolitan or other wide-field area.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: January 9, 2024
    Assignee: SiTime Corporation
    Inventors: Markus Lutz, Sassan Tabatabaei, Charles I. Grosjean, Paul M. Hagelin, Aaron Partridge
  • Patent number: 11791802
    Abstract: In a timing signal generator having a resonator, one or more temperature-sense circuits generate an analog temperature signal and a digital temperature signal indicative of temperature of the resonator. First and second temperature compensation signal generators to generate, respectively, an analog temperature compensation signal according to the analog temperature signal and a digital temperature compensation signal according to the digital temperature signal. Clock generating circuitry drives the resonator into mechanically resonant motion and generates a temperature-compensated output timing signal based on the mechanically resonant motion, the analog temperature compensation signal and the digital temperature compensation signal.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: October 17, 2023
    Assignee: SiTime Corporation
    Inventors: Saleh Heidary Shalmany, Kamran Souri, Sassan Tabatabaei, U{hacek over (g)}ur Sönmez
  • Patent number: 11716055
    Abstract: An oscillator includes a resonator, sustaining circuit and detector circuit. The sustaining circuit receives a sense signal indicative of mechanically resonant motion of the resonator generates an amplified output signal in response. The detector circuit asserts, at a predetermined phase of the amplified output signal, one or more control signals that enable an offset-reducing operation with respect to the sustaining amplifier circuit.
    Type: Grant
    Filed: April 2, 2022
    Date of Patent: August 1, 2023
    Assignee: SiTime Corporation
    Inventors: Aaron Partridge, Sassan Tabatabaei, Lijun Chen, Kamran Souri
  • Patent number: 11646698
    Abstract: In an integrated circuit device having a microelectromechanical-system (MEMS) resonator and a temperature transducer, a clock signal is generated by sensing resonant mechanical motion of the MEMS resonator and a temperature signal indicative of temperature of the MEMS resonator is generated via the temperature transducer. The clock signal and the temperature signal are output from the integrated circuit device concurrently.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: May 9, 2023
    Assignee: SiTime Corporation
    Inventors: Sassan Tabatabaei, Kamran Souri, Saleh Heidary Shalmany, Charles I. Grosjean
  • Patent number: 11528014
    Abstract: In a timing signal generator having a resonator, one or more temperature-sense circuits generate an analog temperature signal and a digital temperature signal indicative of temperature of the resonator. First and second temperature compensation signal generators to generate, respectively, an analog temperature compensation signal according to the analog temperature signal and a digital temperature compensation signal according to the digital temperature signal. Clock generating circuitry drives the resonator into mechanically resonant motion and generates a temperature-compensated output timing signal based on the mechanically resonant motion, the analog temperature compensation signal and the digital temperature compensation signal.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: December 13, 2022
    Assignee: SiTime Corporation
    Inventors: Saleh Heidary Shalmany, Kamran Souri, Sassan Tabatabaei, U{hacek over (g)}ur Sönmez
  • Patent number: 11323071
    Abstract: An oscillator includes a resonator, sustaining circuit and detector circuit. The sustaining circuit receives a sense signal indicative of mechanically resonant motion of the resonator generates an amplified output signal in response. The detector circuit asserts, at a predetermined phase of the amplified output signal, one or more control signals that enable an offset-reducing operation with respect to the sustaining amplifier circuit.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: May 3, 2022
    Assignee: SiTime Corporation
    Inventors: Aaron Partridge, Sassan Tabatabaei, Lijun Chen, Kamran Souri
  • Patent number: 11245361
    Abstract: In an integrated circuit device having a microelectromechanical-system (MEMS) resonator and a temperature transducer, a clock signal is generated by sensing resonant mechanical motion of the MEMS resonator and a temperature signal indicative of temperature of the MEMS resonator is generated via the temperature transducer. The clock signal and the temperature signal are output from the integrated circuit device concurrently.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: February 8, 2022
    Assignee: SiTime Corporation
    Inventors: Sassan Tabatabaei, Kamran Souri, Saleh Heidary Shalmany, Charles I. Grosjean
  • Patent number: 11228302
    Abstract: In a timing signal generator having a resonator, one or more temperature-sense circuits generate an analog temperature signal and a digital temperature signal indicative of temperature of the resonator. First and second temperature compensation signal generators to generate, respectively, an analog temperature compensation signal according to the analog temperature signal and a digital temperature compensation signal according to the digital temperature signal. Clock generating circuitry drives the resonator into mechanically resonant motion and generates a temperature-compensated output timing signal based on the mechanically resonant motion, the analog temperature compensation signal and the digital temperature compensation signal.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: January 18, 2022
    Assignee: SiTime Corporation
    Inventors: Saleh Heidary Shalmany, Kamran Souri, Sassan Tabatabaei, U{hacek over (g)}ur Sönmez
  • Patent number: 11218984
    Abstract: In various time-transfer systems, one or more fixed-position time beacons broadcast radio-frequency (RF) time-transfer messages to time-keeping modules disposed in remote radio heads and other strategic locations to achieve highly reliable and accurate synchronized time, phase, and frequency transfer over a metropolitan or other wide-field area.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: January 4, 2022
    Assignee: SiTime Corporation
    Inventors: Markus Lutz, Sassan Tabatabaei, Charles I. Grosjean, Paul M. Hagelin, Aaron Partridge
  • Patent number: 11005422
    Abstract: An oscillator includes a resonator, sustaining circuit and detector circuit. The sustaining circuit receives a sense signal indicative of mechanically resonant motion of the resonator generates an amplified output signal in response. The detector circuit asserts, at a predetermined phase of the amplified output signal, one or more control signals that enable an offset-reducing operation with respect to the sustaining amplifier circuit.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: May 11, 2021
    Assignee: SiTime Corporation
    Inventors: Aaron Partridge, Sassan Tabatabaei, Lijun Chen, Kamran Souri
  • Patent number: 10979031
    Abstract: In a timing signal generator having a resonator, one or more temperature-sense circuits generate an analog temperature signal and a digital temperature signal indicative of temperature of the resonator. First and second temperature compensation signal generators to generate, respectively, an analog temperature compensation signal according to the analog temperature signal and a digital temperature compensation signal according to the digital temperature signal. Clock generating circuitry drives the resonator into mechanically resonant motion and generates a temperature-compensated output timing signal based on the mechanically resonant motion, the analog temperature compensation signal and the digital temperature compensation signal.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: April 13, 2021
    Assignee: SiTime Corporation
    Inventors: Saleh Heidary Shalmany, Kamran Souri, Sassan Tabatabaei, U{hacek over (g)}ur Sönmez
  • Patent number: 10833632
    Abstract: In an integrated circuit device having a microelectromechanical-system (MEMS) resonator and a temperature transducer, a clock signal is generated by sensing resonant mechanical motion of the MEMS resonator and a temperature signal indicative of temperature of the MEMS resonator is generated via the temperature transducer. The clock signal and the temperature signal are output from the integrated circuit device concurrently.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 10, 2020
    Assignee: SiTime Corporation
    Inventors: Sassan Tabatabaei, Kamran Souri, Saleh Heidary Shalmany, Charles I. Grosjean
  • Patent number: 10622945
    Abstract: An oscillator includes a resonator, sustaining circuit and detector circuit. The sustaining circuit receives a sense signal indicative of mechanically resonant motion of the resonator generates an amplified output signal in response. The detector circuit asserts, at a predetermined phase of the amplified output signal, one or more control signals that enable an offset-reducing operation with respect to the sustaining amplifier circuit.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 14, 2020
    Assignee: SiTime Corporation
    Inventors: Aaron Partridge, Sassan Tabatabaei, Lijun Chen, Kamran Souri
  • Patent number: 10622973
    Abstract: In a high resolution temperature sensor, first and second MEMS resonators generate respective first and second clock signals and a locked-loop reference clock generator generates a reference clock signal having a frequency that is phase-locked to at least one of the first and second clock signals. A frequency-ratio engine within the MEMS temperature sensor oversamples at least one of the first and second clock signals with the reference clock signal to generate a ratio of the frequencies of the first and second clock signals.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: April 14, 2020
    Assignee: SiTime Corporation
    Inventors: Aaron Partridge, Samira Zaliasl, Meisam Heidarpour Roshan, Sassan Tabatabaei
  • Patent number: 10594301
    Abstract: In a timing signal generator having a resonator, one or more temperature-sense circuits generate an analog temperature signal and a digital temperature signal indicative of temperature of the resonator. First and second temperature compensation signal generators to generate, respectively, an analog temperature compensation signal according to the analog temperature signal and a digital temperature compensation signal according to the digital temperature signal. Clock generating circuitry drives the resonator into mechanically resonant motion and generates a temperature-compensated output timing signal based on the mechanically resonant motion, the analog temperature compensation signal and the digital temperature compensation signal.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: March 17, 2020
    Assignee: SiTime Corporation
    Inventors: Saleh Heidary Shalmany, Kamran Souri, Sassan Tabatabaei, U{hacek over (g)}ur Sönmez
  • Patent number: 10247621
    Abstract: In a high resolution temperature sensor, first and second MEMS resonators generate respective first and second clock signals and a locked-loop reference clock generator generates a reference clock signal having a frequency that is phase-locked to at least one of the first and second clock signals. A frequency-ratio engine within the MEMS temperature sensor oversamples at least one of the first and second clock signals with the reference clock signal to generate a ratio of the frequencies of the first and second clock signals.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: April 2, 2019
    Assignee: SiTime Corporation
    Inventors: Aaron Partridge, Samira Zaliasl, Meisam Heidarpour Roshan, Sassan Tabatabaei
  • Patent number: 8255188
    Abstract: Disclosed is a system and related methodology for providing fast low frequency jitter rejection in the measurement of signals under test. A signal under test may be sampled alternately with a reference signal under similar conditions. The resulting sampled signal blocks may then be processed to subtract the known calibrated value of the reference signal from the average signal under test.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: August 28, 2012
    Assignee: GuideTech, Inc.
    Inventor: Sassan Tabatabaei
  • Patent number: 8225156
    Abstract: Various methods and apparatuses are described for a system that includes some on-chip components, e.g., I-Os, test processors, soft wrappers, etc., an external testing unit that provides Parametric Measurement Unit (PMU) capability, and various tests performed on the I-Os by the on-chip testing logic, the test vector patterns supplied by the external testing unit.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: July 17, 2012
    Assignee: Synopsys, Inc.
    Inventors: Sassan Tabatabaei, Yervant Zorian
  • Patent number: 8064293
    Abstract: The present subject matter is directed to a high-speed high resolution and accuracy time interpolator circuit. The interpolator uses basic dual ramp time-to-digital converter architecture, but provides circuits and methodologies to improve the accuracy, reduce the effective intrinsic jitter, and reduce the measurement time. Improved aspects of the present subject matter correspond to the introduction of a current mirror for improved settling time, a high frequency clock for improved resolution and ADC sample processing to improve resolution and accuracy.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: November 22, 2011
    Inventor: Sassan Tabatabaei
  • Patent number: 8032805
    Abstract: Integrated circuits may include at least an instruction processor and input-output subsystems. Each input-output subsystem includes a wrapper circuit a wrapper circuit controlled by the instruction processor. The wrapper circuit includes two or more scan registers, where a data value stored in each scan register can be shifted out for analysis. The wrapper circuit also includes two or more update registers to transfer stored data values between itself and an associated scan register. The wrapper circuit also includes a set of combinatorial logic coupled to the scan registers, the update registers and the instruction test processor, wherein at least two I/Os of the plurality of I/Os but less than all of the plurality of I/Os couple to an external tester.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: October 4, 2011
    Assignee: Synopsys, Inc.
    Inventor: Sassan Tabatabaei